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Abstract. In Part I of this series [PRS20], we introduced a class of
notions of forcing which we call Σ-Prikry, and showed that many of
the known Prikry-type notions of forcing that center around singular
cardinals of countable cofinality are Σ-Prikry. We showed that given a
Σ-Prikry poset P and a P-name for a non-reflecting stationary set T ,
there exists a corresponding Σ-Prikry poset that projects to P and kills
the stationarity of T . In this paper, we develop a general scheme for
iterating Σ-Prikry posets and, as an application, we blow up the power
of a countable limit of Laver-indestructible supercompact cardinals, and
then iteratively kill all non-reflecting stationary subsets of its successor.
This yields a model in which the singular cardinal hypothesis fails and
simultaneous reflection of finite families of stationary sets holds.
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1. Introduction

In the introduction to Part I of this series [PRS20], we described the need
for iteration schemes and the challenges involved in devising such schemes,
especially at the level of successor of singular cardinals. The main tool avail-
able to obtain consistency results at the level of singular cardinals and their
successors is the method of forcing with large cardinals and, in particular,
Prikry-type forcings. By Prikry-type forcings one usually means to a poset
P = (P,≤) having the following property.

Prikry Property. There exists an ordering ≤∗ on P coarser than ≤ (typi-
cally, of a better closure degree) satisfying that for every sentence ϕ in the
forcing language and every p ∈ P there exists q ∈ P with q ≤∗ p deciding ϕ.

In this paper, we develop an iteration scheme for Prikry-type posets,
specifically, for the class of Σ-Prikry forcings that we introduced in [PRS20]
(see Definition 2.3 below). Of course, viable iteration schemes for Prikry-
type posets already exists, namely, the Magidor iteration and the Gitik
iteration (see [Git10, §6]). In both these cases the ordering ≤∗ witness-
ing the Prikry Property of the iteration can be roughly described as the
finite-support iteration of the ≤∗-orderings of its components. As the ex-
pectation from the final ≤∗ is to have an eventually-high closure degree, the
two schemes are typically useful in the context where one carries an iteration
〈Pα; Q̇α | α < ρ〉 with each Q̇α being a Pα-name for either a trivial forcing,
or a Prikry-type forcing concentrating on the combinatorics of the inacces-
sible cardinal α. This should be compared with the iteration to control the
power function α 7→ 2α below some cardinal ρ.

In contrast, in this paper, we are interested in carrying out an iteration of
length κ++, where κ is a singular cardinal (or, more generally, forced by the
first step of the iteration to become one), and all components of the iteration
are Prikry-type forcings that concentrate on the combinatorics of κ or its
successor. For this, we will need to allow a support of arbitrarily large size
below κ. To be able to lift the Prikry property through an infinite-support
iteration, members of the Σ-Prikry class are thus required to possess the
following stronger property, which is inspired by the concepts coming from
the study of topological Ramsey spaces [Tod10].

Complete Prikry Property. There is a partition of the ordering ≤ into
countably many relations 〈≤n | n < ω〉 such that, if we denote conen(q) :=
{r | r ≤n q}, then, for every 0-open U ⊆ P (i.e., q ∈ U =⇒ cone0(q) ⊆ U),
every p ∈ P and every n < ω, there exists q ≤0 p such that conen(q) is
either a subset of U or disjoint from U .

To maintain the above property along the iteration we demand on our
posets to satisfy property D (Definition 2.12 below). Succinctly, this prop-
erty is a game-theoretic abstraction of a standard approach for verifying the
Prikry property; it asserts that the “good” player has a winning strategy in a



SIGMA-PRIKRY FORCING II 3

two-player game in which I (the “good” player) works towards diagonalizing
the sequence of conditions produced by II (the “bad” player).

Another parameter that requires attention when devising an iteration
scheme is the chain condition of the components to be used. In view of the
goal of solving a problem concerning the combinatorics of κ or its successor
through an iteration of length κ++, there is a need to know that all counter-
examples to our problem will show up at some intermediate stage of the
iteration, so that we at least have the chance to kill them all. The standard
way to secure the latter is to require that the whole iteration Pκ++ would
have the κ++-chain condition (κ++-cc). As the κ-support iteration of κ++-cc
posets need not have the κ++-cc (see [Ros18] for an explicit counterexam-
ple), members of the Σ-Prikry class are required to satisfy the following
strong form of the κ++-cc:

Linked0 Property. There exists a map c : P → κ+ satisfying that for all
p, q ∈ P , if c(p) = c(q), then p and q are compatible, and, furthermore,
cone0(p) ∩ cone0(q) is nonempty.

In particular, our verification of the chain condition of Pκ++ will not go
through the ∆-system lemma; rather, we will take advantage of a basic fact
concerning the density of box products of topological spaces.

Now that we have a way to ensure that all counterexamples show up at
intermediate stages, we fix a bookkeeping list 〈zα | α < κ++〉, and shall want
that, for any α < κ++, Pα+1 will amount to forcing over the model V Pα to
solve a problem suggested by zα. The standard approach to achieve this is
to set Pα+1 := Pα ∗ Q̇α, where Q̇α is a Pα-name for a poset that takes care
of zα. However, the disadvantage of this approach is that if P1 is a notion of
forcing that blows up 2κ, then any typical poset Q1 in V P1 which is designed
to add a subset of κ+ via bounded approximations will fail to have the κ++-
cc. To work around this, in our scheme, we set Pα+1 := A(Pα, zα), where
A(·, ·) is a functor that, to each Σ-Prikry poset P and a problem z, produces
a Σ-Prikry poset A(P, z) that projects onto P and solves the problem z. A
key feature of this functor is that the projection from A(P, z) to P splits,
that is, in addition to a projection map π from A(P, z) onto P, there is a
map t that goes in the other direction, and the two maps commute in a very
strong sense. The exact details may be found in our definition of forking
projection (see Definition 2.13 below).

A special case of the main result of this paper may be roughly stated as
follows.

Main Theorem. Suppose that Σ = 〈κn | n < ω〉 is a strictly increasing
sequence of regular uncountable cardinals, converging to a cardinal κ. For
simplicity, let us say that a notion of forcing P is nice if it has property D,
P ⊆ Hκ++ and P does not collapse κ+. Now, suppose that:

• Q is a nice Σ-Prikry notion of forcing;
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• A(·, ·) is a functor that produces for every nice Σ-Prikry notion of
forcing P, and every z ∈ Hκ++, a corresponding nice Σ-Prikry notion
of forcing A(P, z). Moreover, A(·, ·) admits a forking projection to P
with the weak mixing property;
• 22κ = κ++, so that we may fix a bookkeeping list 〈zα | α < κ++〉.

Then there exists a sequence 〈Pα | α ≤ κ++〉 of forcings such that P1 is
isomorphic to Q, Pα+1 is isomorphic to A(Pα, zα), and, for every pair α ≤
β ≤ κ++, Pβ projects onto Pα. Moreover, if for each nonzero limit ordinal

α ≤ κ++, a certain canonical subforcing P̊α of Pα is dense in Pα, then 〈Pα |
α ≤ κ++〉 consists of nice Σ-Prikry forcings.

1.1. Organization of this paper. In Section 2, we recall the definitions
of the Σ-Prikry class, forking projections, and introduce property D and the
weak mixing property.

In Section 3, we present our abstract iteration scheme for Σ-Prikry posets,
and prove the Main Theorem of this paper (see Lemmas 3.6 and 3.14).

In Section 4, we present the very first application of our scheme. We carry
out an iteration of length κ++, where the first step of the iteration is the
Extender Based Prikry Forcing (EBPF) due to Gitik and Magidor [GM94,
§3] for making 2κ = κ++, and all the later steps are obtained by invoking
the functor A(P, z) from [PRS20, §6] for killing a nonreflecting stationary
set decoded from a P-name z. This functor is due to Sharon [Sha05, §2],
and as a corollary, we obtain a correct proof of the main result of [Sha05,
§3]:

Corollary. If κ is the limit of a countable increasing sequence of supercom-
pact cardinals, then there exists a cofinality-preserving forcing extension in
which κ remains a strong limit, every finite collection of stationary subsets
of κ+ reflects simultaneously, and 2κ = κ++.

1.2. Notation and conventions. Our forcing convention is that p ≤ q
means that p extends q. We write P ↓ q for {p ∈ P | p ≤ q}. Denote
Eµθ := {α < µ | cf(α) = θ}. The sets Eµ<θ and Eµ>θ are defined in a
similar fashion. For a stationary subset S of a regular uncountable cardinal
µ, we write Tr(S) := {γ ∈ Eµ>ω | S ∩ γ is stationary in γ}. Hν denotes
the collection of all sets of hereditary cardinality less than ν. For every
set of ordinals x, we denote cl(x) := {sup(x ∩ γ) | γ ∈ Ord, x ∩ γ 6= ∅},
acc(x) := {γ ∈ x | sup(x ∩ γ) = γ > 0} and nacc(x) := x \ acc(x).

2. The Σ-Prikry class and forking projections

In this section, we recall some definitions and facts from [PRS20, §2] and
[PRS20, §4], and then continue developing the theory of forking projections.
Familiarity with [PRS20] is not assumed here.

2.1. The Σ-Prikry class and Property D.
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Definition 2.1. We say that (P, `) is a graded poset iff P = (P,≤) is a
poset, ` : P → ω is a surjection, and, for all p ∈ P :

• For every q ≤ p, `(q) ≥ `(p);
• There exists q ≤ p with `(q) = `(p) + 1.

Convention 2.2. For a graded poset as above, we denote Pn := {p ∈ P |
`(p) = n}, P pn := {q ∈ P | q ≤ p, `(q) = `(p) + n}, and sometimes write
q ≤n p (and say the q is an n-step extension of p) rather than writing q ∈ P pn .

Definition 2.3. Suppose that P = (P,≤) is a notion of forcing with a
greatest element 1l, and that Σ = 〈κn | n < ω〉 is a non-decreasing sequence
of regular uncountable cardinals, converging to some cardinal κ. Suppose
that µ is a cardinal such that 1l 
P µ̌ = κ+. For functions ` : P → ω and
c : P → µ, we say that (P, `, c) is Σ-Prikry iff all of the following hold:

(1) (P, `) is a graded poset;

(2) For all n < ω, Pn := (Pn ∪ {1l},≤) contains a dense subposet P̊n
which is κn-directed-closed;

(3) For all p, q ∈ P , if c(p) = c(q), then P p0 ∩ P
q
0 is non-empty;

(4) For all p ∈ P , n,m < ω and q ≤n+m p, the set {r ≤n p | q ≤m r}
contains a greatest element which we denote by m(p, q).1 In the
special case m = 0, we shall write w(p, q) rather than 0(p, q);2

(5) For all p ∈ P , the set W (p) := {w(p, q) | q ≤ p} has size < µ;
(6) For all p′ ≤ p in P , q 7→ w(p, q) forms an order-preserving map from

W (p′) to W (p);
(7) Suppose that U ⊆ P is a 0-open set, i.e., r ∈ U iff P r0 ⊆ U . Then,

for all p ∈ P and n < ω, there is q ≤0 p, such that, either P qn ∩U = ∅
or P qn ⊆ U .

Remark 2.4. (i) Clause (2) differs from that of [PRS20, Definition 2.3],
where we originally required Pn itself to be κn-directed-closed.

(ii) Clause (3) is the Introduction’s Linked0 property. Often, we will
want to avoid encodings and opt to define the function c as a map
from P to some natural set M of size ≤ µ, instead of a map to the
cardinal µ itself. In the special case that µ<µ = µ, we shall simply
take M to be Hµ.

(iii) Clause (7) is the Complete Prikry Property (CPP).

Definition 2.5. Let p ∈ P . For each n < ω, we write Wn(p) := {w(p, q) |
q ∈ P pn}, and W≥n(p) := {w(p, q) | ∃m ∈ ω \ n[q ∈ P pm]}. The object
W (p) :=

⋃
n<ωWn(p) is called the p-tree.

Fact 2.6 ([PRS20, Lemma 2.8]). Let p ∈ P .

(1) For every n < ω, Wn(p) is a maximal antichain in P ↓ p;
(2) Every two compatible elements of W (p) are comparable;

1By convention, a greatest element, if exists, is unique.
2Note that w(p, q) is the weakest n-step extension of p above q.
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(3) For any pair q′ ≤ q in W (p), q′ ∈W (q);
(4) c �W (p) is injective.

Fact 2.7 ([PRS20, Lemma 2.10]).

(1) P does not add bounded subsets of κ;
(2) For every regular cardinal ν ≥ κ, if there exists p ∈ P for which

p 
P cf(ν) < κ, then there exists p′ ≤ p with |W (p′)| ≥ ν.3

Definition 2.8. We say that ~r = 〈rξ | ξ < χ〉 is a good enumeration of a
set A iff ~r is injective, χ is a cardinal, and {rξ | ξ < χ} = A.

Definition 2.9 (Diagonalizability). Given p ∈ P , n < ω, and a good enu-
meration ~r = 〈rξ | ξ < χ〉 of Wn(p), we say that ~q = 〈qξ | ξ < χ〉 is
diagonalizable (with respect to ~r) iff the two hold:

(a) qξ ≤0 rξ for every ξ < χ;
(b) there is p′ ≤0 p such that for every q′ ∈ Wn(p′), q′ ≤0 qξ, where ξ is

the unique index to satisfy rξ = w(p, q′).

Definition 2.10 (Diagonalizability game). Given p ∈ P , n < ω, a good
enumeration ~r = 〈rξ | ξ < χ〉 of Wn(p), and a dense subset D of P`P(p)+n,
aP(p, ~r,D) is a game of length χ between two players I and II, defined as
follows:

• At stage ξ < χ, I plays a condition pξ ≤0 p compatible with rξ, and
then II plays qξ ∈ D such that qξ ≤ pξ and qξ ≤0 rξ;
• I wins the game iff the resulting sequence ~q = 〈qξ | ξ < χ〉 is diago-

nalizable.

In the special case that D is all of P`P(p)+n, we omit it, writing aP(p, ~r).

The following lemma will be useful later.

Lemma 2.11. Given p ∈ P , n < ω, a good enumeration ~r of Wn(p), and
a dense subset D of P`P(p)+n, I has a winning strategy for aP(p, ~r,D) iff it
has a winning strategy for aP(p, ~r).

Proof. Only the forward implication requires an argument. Write ~r as 〈rξ |
ξ < χ〉; we shall describe a winning strategy for I in the game aP(p, ~r) by
producing sequences of the form 〈(pη, qη, q′η) | η < ξ〉, where 〈(pη, qη) | η < ξ〉
is an initial play (consisting of ξ rounds) in the game aP(p, ~r), and 〈(pη, q′η) |
η < ξ〉 is an initial play in the game aP(p, ~r,D).

Assuming that I has a winning strategy for aP(p, ~r,D), here is a descrip-
tion of our winning strategy for I in the game aP(p, ~r):
I For ξ = 0, we play a condition p0 according to the winning strategy of

I in the game aP(p, ~r,D). Then, II plays q0 ≤ p0 such that q0 ≤0 r0. Since
D is dense in P`P(p)+n, we then pick q′0 ∈ D with q′0 ≤0 q0.
I Suppose that ξ < χ is nonzero and that 〈(pη, qη, q′η) | η < ξ〉 has

already been defined. Let pξ be given by the winning strategy of I for the

3For future reference, we point out that this fact relies only on Clauses (1), (2), (4) and
(7) of Definition 2.3. Furthermore, we do not need to know that 1l decides a value for κ+.
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game aP(p, ~r,D) with respect to the initial play 〈(pη, q′η) | η < ξ〉. Then, II

plays qξ ≤ pξ such that qξ ≤0 rξ. Finally, pick q′ξ ∈ D such that q′ξ ≤0 qξ.

At the end of the above process, since 〈(pξ, q′ξ) | ξ < χ〉 is a play in

the game aP(p, ~r,D) using the winning strategy of I, we may fix p′ ≤0 p
witnessing that 〈q′ξ | ξ < χ〉 is diagonalizable. So, for every q′ ∈ Wn(p′),

if ξ is the unique index to satisfy rξ = w(p, q′), then q′ ≤0 q′ξ ≤0 qξ. In

particular, p′ witnesses that 〈qξ | ξ < χ〉 is diagonalizable, as desired. �

Definition 2.12 (Property D). We say that (P, `P) has property D iff for
any p ∈ P , n < ω and any good enumeration ~r = 〈rξ | ξ < χ〉 of Wn(p), I
has a winning strategy for the game aP(p, ~r).

2.2. Forking projections. In this and the next subsection, we continue
the work started in [PRS20, §4] concerning forking projections. This will
play a key role in Section 3, where we deal with iterating Σ-Prikry posets.

Definition 2.13 ([PRS20, Definition 4.1]). Suppose that (P, `P, cP) is a Σ-
Prikry triple, A = (A,E) is a notion of forcing, and `A and cA are functions
with dom(`A) = dom(cA) = A.

A pair of functions (t, π) is said to be a forking projection from (A, `A)
to (P, `P) iff all of the following hold:

(1) π is a projection from A onto P, and `A = `P ◦ π;
(2) for all a ∈ A, t(a) is an order-preserving function from (P ↓ π(a),≤)

to (A ↓ a,E);
(3) for all p ∈ P , {a ∈ A | π(a) = p} admits a greatest element, which

we denote by dpeA;
(4) for all n,m < ω and b En+m a, m(a, b) exists and satisfies:

m(a, b) = t(a)(m(π(a), π(b)));

(5) for all a ∈ A and q ≤ π(a), π(t(a)(q)) = q;

(6) for all a ∈ A and q ≤ π(a), a = dπ(a)eA iff t(a)(q) = dqeA;
(7) for all a ∈ A, a′ E0 a and r ≤0 π(a′), t(a′)(r) E t(a)(r).

The pair (t, π) is said to be a forking projection from (A, `A, cA) to
(P, `P, cP) iff, in addition to all of the above, the following holds:

(8) for all a, a′ ∈ A, if cA(a) = cA(a′), then cP(π(a)) = cP(π(a′)) and, for

all r ∈ P π(a)
0 ∩ P π(a′)

0 , t(a)(r) = t(a′)(r).

Remark 2.14. Intuitively speaking, t(a) is an operator that, for each con-
dition p ∈ P ↓ π(a), provides the E-greatest condition b E a with π(b) = p.

Example 2.15. Suppose that (P, `P, cP) is a Σ-Prikry triple. Let µ denote
the cardinal such that 1l 
P µ̌ = κ+. We define the following objects:

• A = (A,E), where A := P ×µ and (p, α)E(q, β) iff p ≤ q and α ⊇ β;
• `A : A→ ω via `A(p, α) := `P(p);
• cA : A→ µ× µ via cA(p, α) := (cP(p), α);
• π : A→ P via π(p, α) := p;
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• for a = (p, α) ∈ A, define t(a) : P ↓ p→ A via t(a)(q) := (q, α).

Then (t, π) is a forking projection from (A, `A, cA) to (P, `P, cP), and daeA =
(π(a), 0) for all a ∈ A.

Definition 2.16. Given two posets P = (P,≤) and A = (A,E), and a
projection π from A to P, we denote by Aπ the poset (A,Eπ), where aEπ b
iff aE b and π(a) = π(b).

For a subposet Å = (Å,E) of A, we likewise denote Åπ := (Å,Eπ).

Lemma 2.17. Suppose that (t, π) is a forking projection from (A, `A) to
(P, `P). For every a ∈ A, t(a)(π(a)) = a.

Proof. By Definition 2.13(4), using (n,m, b) := (0, 0, a), we infer that

t(a)(π(a)) = t(a)(w(π(a), π(a))) = w(a, a) = a. �

Lemma 2.18 (Canonical form). Suppose that (P, `P, cP) and (A, `A, cA) are
both Σ-Prikry notions of forcing. Denote P = (P,≤) and A = (A,E).

If (A, `A, cA) admits a forking projection to (P, `P, cP) as witnessed by a
pair (t, π), then we may assume that all of the following hold true:

(1) each element of A is a pair (x, y) with π(x, y) = x;

(2) for all a ∈ A, dπ(a)eA = (π(a), ∅);
(3) for all p, q ∈ P , if cP(p) = cP(q), then cA(dpeA) = cA(dqeA).

Proof. By applying a bijection, we may assume that A = |A| with 1lA = ∅.
To clarify what we are about to do, we agree to say that “a is a lift” iff
a = dπ(a)eA. Now, define f : A→ P ×A via:

f(a) :=

{
(π(a), ∅), if a is a lift;

(π(a), a), otherwise.

Claim 2.18.1. f is injective.

Proof. Suppose a, a′ ∈ A with f(a) = f(a′).
I If a is not a lift and a′ is not a lift, then from f(a) = f(a′) we imme-

diately get that a = a′.
I If a is a lift and a′ is a lift, then from f(a) = f(a′), we infer that

π(a) = π(a′), so that a = dπ(a)eA = dπ(a′)eA = a′.
I If a is not a lift, but a′ is a lift, then from f(a) = f(a′), we infer that

a = ∅ = 1lA, contradicting the fact that 1lA = d1lPeA = dπ(1lA)eA is a lift. So
this case is void. �

Let B := Im(f) and EB := {(f(a), f(b)) | a E b}, so that B := (B,EB) is
isomorphic to A. Define `B := `A ◦ f−1 and πB := π ◦ f−1. Also, define tB
via tB(b)(p) := f(t(f−1(b))(p)). It is clear that b ∈ B is a lift iff f−1(a) is
a lift iff b = (πB(b), ∅).

Next, define cB : B → µ× 2 by letting for all b ∈ B:

cB(b) :=

{
(cP(πB(b)), 0), if b is a lift;

(cA(f−1(b)), 1), otherwise.
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Claim 2.18.2. Suppose b0, b1 ∈ B with cB(b0) = cB(b1). Then cP(πB(b0)) =

cP(πB(b1)) and, for all r ∈ P πB(b0)
0 ∩ P πB(b1)

0 , tB(b0)(r) = tB(b1)(r).

Proof. We focus on verifying that for all r ∈ P πB(b0)
0 ∩ P πB(b1)

0 , tB(b0)(r) =
tB(b1)(r). For each i < 2, denote ai := f−1(bi) and pi := πB(bi), so that
π(ai) = pi. Suppose r ∈ P p0

0 ∩ P
p1
0 .

I If b0 is a lift, then so are b1, a0, a1. Therefore, for each i < 2, Defi-
nition 2.13(6) implies that tB(bi)(r) = f(t(ai)(r)) = f(dreA) = dreB. In
effect, tB(b0)(r) = tB(b1)(r), as desired.

I Otherwise, cA(a0) = cA(a1). As r ∈ P
π(a0)
0 ∩ P π(a1)

0 , tB(b0)(p) =
f(t(a0)(p)) = f(t(a1)(p)) = tB(b1)(p). �

This completes the proof. �

Setup 2. Throughout the rest of this section, suppose that:

• P = (P,≤) is a notion of forcing with a greatest element 1lP;
• A = (A,E) is a notion of forcing with a greatest element 1lA;
• Σ = 〈κn | n < ω〉 is a non-decreasing sequence of regular uncountable

cardinals, converging to some cardinal κ, and µ is a cardinal such
that 1lP 
P µ̌ = κ̌+;
• `P and cP are functions witnessing that (P, `P, cP) is Σ-Prikry;
• `A and cA are functions with dom(`A) = dom(cA) = A;
• (t, π) is a forking projection from (A, `A, cA) to (P, `P, cP).

The next two facts will help verifying Clauses (1) and (3) of Definition 2.3
for the different stages of the iteration in Section 3.

Fact 2.19 ([PRS20, Lemma 4.3]). Suppose that (t, π) is a forking projection
from (A, `A) to (P, `P), or, just a pair of maps satisfying Clauses (1), (2)
and (4) of Definition 2.13. For each a ∈ A, the following holds:

(1) t(a) �W (π(a)) forms a bijection from W (π(a)) to W (a);

(2) for all n < ω and r ∈ P π(a)
n , t(a)(r) ∈ Aan.

In particular, (A, `A) is a graded poset.

Fact 2.20 ([PRS20, Lemma 4.7]). Suppose that (t, π) is a forking projection
from (A, `A, cA) to (P, `P, cP), or, just a pair of maps satisfying Clauses (1),
(2), (4), (7) and (8) of Definition 2.13. For all a, a′ ∈ A, if cA(a) = cA(a′),

then Aa0 ∩ Aa
′

0 is non-empty. In particular, if | Im(cA)| ≤ µ, then (A, `A) is
µ+-2-linked0.

Lemma 2.21. Suppose that (A, `A) has property D. Then it has the CPP.

Proof. Let U ⊆ A be a 0-open set, a ∈ A and n < ω. Let ~r = 〈rξ | ξ < χ〉
be a good enumeration of Wn(a). Let 〈(aξ, bξ) | ξ < χ〉 list the rounds of
the game aA(a,~r) in which, in round ξ, I plays according to their winning
strategy and II plays bξ En aξ such that

(i) bξ E0 rξ, and
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(ii) if A
rξ
0 ∩ U 6= ∅, then bξ ∈ U .

Let a′E0 a be a condition witnessing the diagonalizability of 〈bξ | ξ < χ〉.
Set p := π(a) and p′ := π(a′). By Fact 2.19, W (a) = t(a)“W (p), hence, for
each q ≤n p, we may let ξ(q) < χ be such that t(a)(w(p, q)) = rξ(q). Set

Ū := {q ∈ P pn | bξ(q) ∈ U}. As q′ ≤0 q ≤n p implies ξ(q) = ξ(q′), the set Ū is

0-open. Recalling Setup 2, (P, `P, c) is Σ-Prikry, so applying CPP to Ū , p′,
and n, we find p̄ ≤0 p′ such that either P p̄n ⊆ Ū or P p̄n ∩ Ū = ∅.

Set ā := t(a′)(p̄). Since p̄ ≤0 p′ ≤0 p, Clauses (1) and (2) of Defini-
tion 2.13 yield āE0 a′ E0 a.

Claim 2.21.1. Let b ∈ Aān. Then:

(1) bE0 bξ(π(b));

(2) If b ∈ U , then P p̄n ⊆ Ū .

Proof. Denote q := π(b).
(1) Since w(a′, b) ∈Wn(a′) and a′ is a witness to diagonalizability of 〈bξ |

ξ < χ〉, bE0w(a′, b)E0 bξ, where ξ is the unique index to satisfy rξ = w(a, b).
By Clause (4) of Definition 2.13,

rξ = w(a, b) = t(a)(w(p, q)) = rξ(q),

so that ξ = ξ(π(b)).

(2) Assuming that b ∈ U , we altogether infer that b ∈ Arξ(q)0 ∩U 6= ∅, and
then Clause (ii) above implies that bξ(q) ∈ U . By the definition of Ū , then,

q ∈ Ū ∩ P p̄n . So, by the choice of p̄, furthermore P p̄n ⊆ Ū . �

It thus follows that if Aān ∩ U 6= ∅, then for every b ∈ Aān, π(b) ∈ P p̄n ⊆ Ū ,
so that bξ(π(b)) ∈ U . By the preceding claim, b E0 bξ(π(b)), so, since U is

0-open, b ∈ U . Thus we have shown that if Aān ∩ U 6= ∅, then Aān ⊆ U . �

Proposition 2.22. Let a ∈ A, n < ω and ~s = 〈sξ | ξ < χ〉 be a good
enumeration of Wn(a). Let p′ ≤0 π(a).

Suppose that 〈bξ | ξ < χ〉 is a sequence of conditions in A ↓ a such that:

(α) 〈π(bξ) | ξ < χ〉 is diagonalizable with respect to 〈π(sξ) | ξ < χ〉, as

witnessed by p′;4

(β) b is a condition in A with π(b) = p′ such that, for all q′ ∈Wn(p′),

t(b)(q′)E0 bξ,

where ξ is the unique index such that π(sξ) = w(π(a), q′).

Then b witnesses that 〈bξ | ξ < χ〉 is diagonalizable with respect to ~s.

Proof. We go over the two clauses of Definition 2.9:

(a) Let ξ < χ. By Clause (α) above, π(bξ) ≤0 π(sξ). Together with
Definition 2.3(6), it follows that

w(π(a), π(bξ)) ≤0 w(π(a), π(sξ)) = π(sξ).

4By Fact 2.19, 〈π(sξ) | ξ < χ〉 is a good enumeration of Wn(π(a)).
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Finally, Clauses (1), (4) and (5) of Definition 2.13 yield

bξ E
0 w(a, bξ) = t(a)(w(π(a), π(bξ)))E

0 t(a)(π(sξ)) = sξ.

(b) Let b′ ∈Wn(b), and we shall show that b′E0 bξ, where ξ is the unique
index to satisfy sξ = w(a, b′). Set q′ := π(b′). As π(b) = p′, we infer
from Definition 2.13(4) that b′ = t(b)(q′) and q′ ∈ Wn(p′). Thus,
by Clause (β) above b′ = t(b)(q′)E0 bξ, where ξ is the unique index
such that π(sξ) = w(π(a), q′). Again by Definition 2.13(4),

sξ = t(a)(π(sξ)) = t(a)(w(π(a), q′)) = w(a, b′),

as desired. �

2.3. Types and the Weak Mixing Property. In this subsection, we will
provide a sufficient condition for (A, `A) to inherit property D from (P, `P).

While reading the next two definitions, the reader may want to have a
simple example in mind; such an example is given by Lemma 2.26 below.

Definition 2.23 (Types). A type over (t, π) is a map tp : A→ <µω having
the following properties:

(1) for each a ∈ A, either dom(tp(a)) = α+ 1 for some α < µ, in which
case we define mtp(a) := tp(a)(α), or tp(a) is empty, in which case
we define mtp(a) := 0;

(2) for all a, b ∈ A with b E a, dom(tp(a)) ≤ dom(tp(b)) and for each
i ∈ dom(tp(a)), tp(b)(i) ≤ tp(a)(i);

(3) for all a ∈ A and q ≤ π(a), dom(tp(t(a)(q))) = dom(tp(a));

(4) for all a ∈ A, tp(a) = ∅ iff a = dπ(a)eA;
(5) for all a ∈ A and α ∈ µ \ dom(tp(a)), there exists a stretch of a to

α, denoted ayα, and satisfying the following:
(a) ayα Eπ a;
(b) dom(tp(ayα)) = α+ 1;
(c) tp(ayα)(i) ≤ mtp(a) whenever dom(tp(a)) ≤ i ≤ α;

(6) for all a, b ∈ A with dom(tp(a)) = dom(tp(b)), for every α ∈ µ \
dom(tp(a)), if bE a, then byα E ayα;

(7) For each n < ω, the poset Ån is dense in An, where Ån := (Ån,E)

and Ån := {a ∈ An | π(a) ∈ P̊n & mtp(a) = 0}.
Remark 2.24. Note that Clauses (2) and (3) imply that for all m,n < ω,

a ∈ Åm and q ≤ π(a), if q ∈ P̊n then t(a)(q) ∈ Ån.

The next definition is a weakening of [PRS20, Definition 4.11].

Definition 2.25 (Weak Mixing Property). The forking projection (t, π)
is said to have the weak mixing property iff it admits a type tp satisfying
that for all n < ω, a ∈ A, ~r, and p′ ≤0 π(a), and for every function g :
Wn(π(a))→ A ↓ a, if there exists an ordinal ι such that all of the following
hold:5

5The ordinal ι would help us keep track of the support when appealing to the weak
mixing property in an iteration (see, e.g., Lemma 3.10 and Claim 3.11.6).
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(1) ~r = 〈rξ | ξ < χ〉 is a good enumeration of Wn(π(a));
(2) 〈π(g(rξ)) | ξ < χ〉 is diagonalizable with respect to ~r, as witnessed

by p′;6

(3) for every ξ < χ:
• if ξ < ι, then dom(tp(g(rξ))) = 0;
• if ξ = ι, then dom(tp(g(rξ))) ≥ 1;
• if ξ > ι, then dom(tp(g(rξ))) > (supη<ξ dom(tp(g(rη)))) + 1;

(4) for all ξ ∈ (ι, χ) and i ∈ [dom(tp(a)), supη<ξ dom(tp(g(rη)))],

tp(g(rξ))(i) ≤ mtp(a),

(5) supξ<χ mtp(g(rξ)) < ω,

then there exists bE0 a with π(b) = p′ such that, for all q′ ∈Wn(p′),

t(b)(q′)E0 g(w(π(a), q′)).

Lemma 2.26. The forking projection (t, π) from Example 2.15 has the
weak mixing property.

Proof. We attach a type tp : A→ <µω as follows. For every a = (p, α) ∈ A,
with α > 0, let tp(a) be the constant (α+ 1)-sequence whose sole value is 0.
Otherwise, let tp(a) := ∅. We shall verify that tp witnesses that (t, π) has
the weak mixing property. To this end, suppose that we are given n < ω,
a ∈ A, ~r = 〈rξ | ξ < χ〉, p′ ≤0 π(a), a function g : Wn(π(a)) → A ↓ a and
an ordinal ι satisfying Clauses (1)–(4) of Definition 2.25. For each ξ < χ,
write (qξ, αξ) := g(rξ). Note that by Clause (4) of Definition 2.23 and
Example 2.15, αξ = 0 for all ξ < ι.

Set b := (p′, α′), for α′ := supι≤ξ<χ αξ. Clearly, b E0 a. Note that,
by regularity of µ, α′ < µ. Now, since p′ witnesses that 〈qξ | ξ < χ〉 is
diagonalizable, for every q′ ∈Wn(p′), if we let ξ denote the unique index to
satisfy rξ = w(π(a), q′), then q′ ≤0 qξ. As α′ ≥ αξ, it altogether follows that
(q′, α′) = t(b)(q′)E0 g(w(π(a), q′)) = (qξ, αξ). �

Lemma 2.27. Suppose that (t, π) has the weak mixing property and that
(P, `P) has property D. Then (A, `A) has property D, as well.

Proof. Let a ∈ A and n < ω. Let ~s = 〈sξ | ξ < χ〉 be a good enumeration
of Wn(a). By Lemma 2.11 and Definition 2.23(7), it suffices to show that I

has a winning strategy in aA(a,~s,D), where D := Å`A(a)+n. For each ξ < χ,
let rξ := π(sξ). By Fact 2.19, sξ = t(a)(rξ), and ~r := 〈rξ | ξ < χ〉 forms a
good enumeration of Wn(π(a)).

Fix any type tp witnessing the weak mixing property of (t, π). We shall
describe a winning strategy for I in the game aA(a,~s,D) by producing se-
quences of the form 〈(pη, aη, bη, qη) | η < ξ〉, where 〈(aη, bη) | η < ξ〉 is an
initial play (consisting of ξ rounds) in the game aA(a,~s,D), and 〈(pη, qη) |
η < ξ〉 is an initial play in the game aP(π(a), ~r). Roughly speaking, the idea

6In particular, π(g(rξ)) ≤0 rξ and `A(g(rξ)) = `A(a) + n for every ξ < χ
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is to design the moves of I (i.e., the aη’s) so that they force II to play con-
ditions bη in such a way that the map g : sη 7→ bη satisfies the requirements
of Definition 2.25; most notably, Clauses (3) and (4). To comply with this
we shall do suitable stretches when defining the conditions aη’s.
I For ξ = 0, we first play a condition p0 according to the winning strategy

for I in the game aP(π(a), ~r). In particular, p0 ≤0 π(a). As p0 is compatible
with r0, fix a condition r′ ≤ p0, r0, and note that it follows from Defini-
tion 2.13(2) that t(a)(r′)Et(a)(p0),t(a)(r0). Now set ᾱ0 := dom(tp(a))+1
and a0 := t(a)(p0)yᾱ0 . By Definition 2.23(5), a0 E0 a, π(a0) = p0, and it
can also be shown that a0 is compatible with s0. Indeed, by Clauses (5) and
(6) of Definition 2.23, we infer that:

• a0 Eπ t(a)(p0);
• dom(tp(aξ)) = ᾱ0 + 1;
• tp(a0)(i) ≤ mtp(t(a)(p0)), whenever dom(tp(t(a)(p0))) ≤ i ≤ ᾱ0;
• t(a)(r′)yᾱ0 E t(a)(p0)yᾱ0 = a0 and t(a)(r′)yᾱ0 E t(a)(r′) E s0.

Thus, a0 is compatible with s0. Next, let II play b0 ∈ D at will, subject to
ensuring that b0 E a0 and b0 E0 s0. Finally, let q0 := π(b0).
I Suppose that ξ < χ is nonzero and that 〈(pη, aη, bη, qη) | η < ξ〉 has

already been defined. Let pξ be given by the winning strategy for I in the
game aP(π(a), ~r) with respect to the initial play 〈(pη, qη) | η < ξ〉. As in the
previous case, we may fix a condition r′ such that t(a)(r′)E t(a)(pξ), sξ.

Set ᾱξ := (supη<ξ dom(tp(bη))) + 1. Then, by Clauses (5) and (6) of

Definition 2.23, we may let aξ := t(a)(pξ)
yᾱξ , and argue as before that aξ

is compatible with sξ. Also, note that aξ E0 a and π(aξ) = pξ. Next, let II
play any bξ ∈ D such that bξ E aξ and aξ E0 sξ. Finally, let qξ := π(bξ).

At the end of the game, we have produced a sequence 〈(pξ, aξ, bξ, qξ) |
ξ < χ〉. Since 〈(pξ, qξ) | ξ < χ〉 is the outcome of a aP(π(a), ~r)-game in
which I played according to a winning strategy, we may fix p′ ≤0 π(a)
witnessing that 〈qξ | ξ < χ〉 is diagonalizable.

It follows that if we define a function g : Wn(π(a)) → D via g(rξ) := bξ,
then all the requirements of Definition 2.25 are fulfilled with respect to ι := 0
(Note that we have secured that dom(tp(aξ)) > 0 for all ξ < χ). For instance,
to see that Clause (4) of Definition 2.25 holds, notice that by Clauses (2)
and (5) of Definition 2.23, for all ξ < χ and i ∈ [dom(tp(a)), dom(tp(aξ))),

tp(bξ)(i) ≤ tp(aξ)(i) ≤ mtp(t(a)(pξ)) ≤ mtp(a).

In effect, we may pick bE0 a with π(b) = p′ such that for all q′ ∈Wn(p′),

t(b)(q′)E0 g(w(π(a), q′)).

By definition, for each q′ ∈Wn(p′), g(w(π(a), q′)) = bξ, where ξ is the unique
index such that π(sξ) = w(π(a), q′). Therefore, invoking Proposition 2.22
we infer that b diagonalizes 〈bξ | ξ < χ〉, as desired. �

Corollary 2.28. If (P, `P) has property D, and (t, π) has the weak mixing
property, then (A, `A) has the CPP.
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Proof. By Lemmas 2.21 and 2.27. �

Lemma 2.29. Suppose that (t, π) is as in Setup 2 or, just a pair of maps
satisfying Clauses (1), (2), (5) and (7) of Definition 2.13.

Let n < ω. If (t, π) admits a type, and Ån is defined according to the last

clause of Definition 2.23, if Åπn is κn-directed-closed, then so is Ån.

Proof. The proof is very similar to that of [PRS20, Lemma 4.6], bearing
Remark 2.24 in mind. �

3. Iteration Scheme

In this section, we present our iteration scheme for Σ-Prikry posets.
Throughout the section, assume that Σ = 〈κn | n < ω〉 is a non-decreasing
sequence of regular uncountable cardinals. Denote κ := supn<ω κn. Also,
assume that µ is some cardinal satisfying µ<µ = µ, so that |Hµ| = µ.

The following convention will be applied hereafter:

Convention 3.1. For all ordinals α ≤ δ ≤ µ+:

(1) ∅δ := δ × {∅} denotes the δ-sequence with constant value ∅;
(2) For an α-sequence p and a δ-sequence q, p ∗ q denotes the unique

δ-sequence satisfying that for all β < δ:

(p ∗ q)(β) =

{
q(β), if α ≤ β < δ;

p(β), otherwise.

(3) Let Pδ := (Pδ,≤δ) and Pα := (Pα,≤α) be forcing posets such that
Pδ ⊆ δHµ+ and Pα ⊆ αHµ+ . Also, assume p 7→ p � α defines a

projection between Pδ and Pα. We denote by iδα : V Pα → V Pδ the
map defined by recursion over the rank of each Pα-name σ as follows:

iδα(σ) := {(iδα(τ), p ∗ ∅δ) | (τ, p) ∈ σ}.

Our iteration scheme requires three building blocks:

Building Block I. We are given a Σ-Prikry triple (Q, `, c) such that Q =
(Q,≤Q) is a subset of Hµ+ , 1lQ 
Q µ̌ = κ+ and 1lQ 
Q “κ is singular”.7

Additionally, we assume that (Q, `) has property D. To streamline the
matter, we also require that 1lQ be equal to ∅.
Building Block II. For every Σ-Prikry triple (P, `P, cP) having property
D such that P = (P,≤) is a subset of Hµ+ , 1lP 
P µ̌ = κ+ and 1lP 
P
“κ is singular”, every r? ∈ P , and every P-name z ∈ Hµ+ , we are given a
corresponding Σ-Prikry triple (A, `A, cA) such that:

(a) (A, `A, cA) admits a forking projection (t, π) to (P, `P, cP) that has
the weak mixing property;8

7At the behest of the referee, we stress that the last hypothesis plays a rather isolated
role; see Footnote 20 on page 34.

8So, by Lemma 2.27, (A, `A) has property D, as well.
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(b) for each n < ω, Åπn is κn-directed-closed;9

(c) 1lA 
A µ̌ = κ+;
(d) A = (A,E) is a subset of Hµ+ .

By Lemma 2.18, we may streamline the matter, and also require that:

(e) each element of A is a pair (x, y) with π(x, y) = x;

(f) for every a ∈ A, dπ(a)eA = (π(a), ∅);
(g) for every p, q ∈ P , if cP(p) = cP(q), then cA(dpeA) = cA(dqeA).

Building Block III. We are given a function ψ : µ+ → Hµ+ .

Goal 3.2. Our goal is to define a system 〈(Pδ, `δ, cδ, 〈tδ,γ | γ ≤ δ〉) | δ ≤ µ+〉
in such a way that for all γ ≤ δ ≤ µ+:

(i) Pδ is a poset (Pδ,≤δ), Pδ ⊆ δHµ+ , and, for all p ∈ Pδ, |Bp| < µ,
where Bp := {β + 1 | β ∈ dom(p) & p(β) 6= ∅};

(ii) The map πδ,γ : Pδ → Pγ defined by πδ,γ(p) := p�γ forms a projection
from Pδ to Pγ and `δ = `γ ◦ πδ,γ ;

(iii) P0 is a trivial forcing, P1 is isomorphic to Q given by Building Block I,
and Pδ+1 is isomorphic to A given by Building Block II when invoked
with (Pδ, `δ, cδ) and a pair (r?, z) which is decoded from ψ(δ);

(iv) If δ > 0, then (Pδ, `δ, cδ) is a Σ-Prikry triple having property D
whose greatest element is ∅δ, `δ = `1 ◦ πδ,1, and ∅δ 
Pδ µ̌ = κ+;

(v) If 0 < γ < δ ≤ µ+, then (tδ,γ , πδ,γ) is a forking projection from
(Pδ, `δ) to (Pγ , `γ); in case δ < µ+, (tδ,γ , πδ,γ) is furthermore a fork-
ing projection from (Pδ, `δ, cδ) to (Pγ , `γ , cγ), and in case δ = γ + 1,
(tδ,γ , πδ,γ) has the weak mixing property;

(vi) If 0 < α ≤ β ≤ δ, then, for all p ∈ Pδ and r ≤α p�α, tβ,α(p�β)(r) =
(tδ,α(p)(r)) � β.

Remark 3.3. Note the asymmetry between the cases δ < µ+ and δ = µ+:

(1) By Clause (i), we will have that Pδ ⊆ Hµ+ for all δ < µ+, but
Pµ+ * Hµ+ . Still, Pµ+ will nevertheless be isomorphic to a subset of
Hµ+ , as we may identify Pµ+ with {p � (sup(Bp) + 1) | p ∈ Pµ+}.

(2) Clause (v) puts a weaker assertion for δ = µ+. In order to avoid
trivialities, let us assume that µ+-many stages in our iteration Pµ+

are non-trivial. To see the restriction in Clause (v) is necessary note
that, by the pigeonhole principle, there must exist two conditions
p, q ∈ Pµ+ and an ordinal γ < µ+ for which cµ+(p) = cµ+(q), Bp ⊆ γ,
but Bq * γ. Now, towards a contradiction, assume there is a map t
such that (t, πµ+,γ) forms a forking projection from (Pµ+ , `µ+ , cµ+)
to (Pγ , `γ , cγ). By Definition 2.13(8), then, cγ(p � γ) = cγ(q � γ), so

that by Definition 2.3(3), we should be able to pick r ∈ (Pγ)p�γ0 ∩
(Pγ)q�γ0 , and then by Definition 2.13(8), t(p)(r) = t(q)(r). Finally,

9Ån denotes the poset of Definition 2.23(7) regarded with respect to the type witnessing
Clause (a) of Building Block II.
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as Bp ⊆ γ, p = dp � γePµ+ ,10 so that, by Definition 2.13(6), t(p)(r) =

drePµ+ . But then t(q)(r) = drePµ+ , so that, by Definition 2.13(6),

q = dq � γePµ+ , contradicting the fact that Bq * γ.

3.1. Defining the iteration. For every δ < µ+, fix an injection φδ : δ →
µ. As |Hµ| = µ, by the Engelking-Kar lowicz theorem, we may also fix
a sequence 〈ei | i < µ〉 of functions from µ+ to Hµ such that for every
function e : C → Hµ with C ∈ [µ+]<µ, there is i < µ such that e ⊆ ei.

The upcoming definition is by recursion on δ ≤ µ+, and we continue as
long as we are successful. We shall later verify that the described process is
indeed successful.
I Let P0 := ({∅},≤0) be the trivial forcing. Let `0 and c0 be the constant

function {(∅, ∅)}, and let t0,0 be the constant function {(∅, {(∅, ∅)})}, so that
t0,0(∅) is the identity map.
I Let P1 := (P1,≤1), where P1 := 1Q and p ≤1 p′ iff p(0) ≤Q p′(0).

Define `1 and c1 by stipulating `1(p) := `(p(0)) and c1(p) = c(p(0)). For all
p ∈ P1, let t1,0(p) : {∅} → {p} be the constant function, and let t1,1(p) be
the identity map.
I Suppose δ < µ+ and that 〈(Pβ, `β, cβ, 〈tβ,γ | γ ≤ β〉) | β ≤ δ〉 has

already been defined. We now define the triple (Pδ+1, `δ+1, cδ+1) and the
sequence of maps 〈tδ+1,γ | γ ≤ δ + 1〉.
II If ψ(δ) happens to be a triple (β, r, σ), where β < δ, r ∈ Pβ and σ is

a Pβ-name, then we appeal to Building Block II with (Pδ, `δ, cδ), r? := r ∗∅δ
and z := iδβ(σ) to get a corresponding Σ-Prikry poset (A, `A, cA).

II Otherwise, we obtain (A, `A, cA) by appealing to Building Block II
with (Pδ, `δ, cδ), r? := ∅δ and z := ∅.

In both cases, we also obtain a forking projection (t, π) from (A, `A, cA)
to (Pδ, `δ, cδ). Furthermore, each condition in A = (A,E) is a pair (x, y)

with π(x, y) = x, and, for every p ∈ Pδ, dpeA = (p, ∅). Now, define Pδ+1 :=
(Pδ+1,≤δ+1) by letting Pδ+1 := {xa〈y〉 | (x, y) ∈ A}, and then let p ≤δ+1 p

′

iff (p � δ, p(δ)) E (p′ � δ, p′(δ)). Put `δ+1 := `1 ◦ πδ+1,1 and define cδ+1 :
Pδ+1 → Hµ via cδ+1(p) := cA(p � δ, p(δ)).

Next, let p ∈ Pδ+1, γ ≤ δ + 1 and r ≤γ p � γ be arbitrary; we need to
define tδ+1,γ(p)(r). For γ = δ + 1, let tδ+1,γ(p)(r) := r, and for γ ≤ δ, let

(*) tδ+1,γ(p)(r) := xa〈y〉 iff t(p � δ, p(δ))(tδ,γ(p � δ)(r)) = (x, y).

I Suppose δ ∈ acc(µ+ + 1), and that 〈(Pβ, `β, cβ, 〈tβ,γ | γ ≤ β〉) | β < δ〉
has already been defined. Define Pδ := (Pδ,≤δ) by letting Pδ be all δ-
sequences p such that |Bp| < µ and ∀β < δ(p � β ∈ Pβ). Let p ≤δ q iff
∀β < δ(p � β ≤β q � β). Let `δ := `1 ◦ πδ,1. Next, we define cδ : Pδ → Hµ, as
follows.

10This is a consequence of the fact that p = (p�γ)∗∅µ+ = dp � γePµ+ . See the discussion

at the beginning of Lemma 3.6.
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II If δ < µ+, then, for every p ∈ Pδ, let

cδ(p) := {(φδ(γ), cγ(p � γ)) | γ ∈ Bp}.
II If δ = µ+, then, given p ∈ Pδ, first let C := cl(Bp), then define a

function e : C → Hµ by stipulating:

e(γ) := (φγ [C ∩ γ], cγ(p � γ)),

and then let cδ(p) := i for the least i < µ such that e ⊆ ei.
Finally, let p ∈ Pδ, γ ≤ δ and r ≤γ p � γ be arbitrary; we need to define

tδ,γ(p)(r). For γ = δ, let tδ,γ(p)(r) := r, and for γ < δ, let tδ,γ(p)(r) :=⋃
{tβ,γ(p � β)(r) | γ ≤ β < δ}.

Convention 3.4. Even though (P0, `0) is not a graded poset, in order to
smooth up inductive claims that come later, we define ≤0

0 to be ≤0, and
likewise, for every p ∈ P0, we interpret (P0)p0 as {q ∈ P0 | q ≤0

0 p}.

3.2. Verification. We now verify that for all δ ≤ µ+, (Pδ, `δ, cδ, 〈tδ,γ | γ ≤
δ〉) fulfills requirements (i)–(vi) of Goal 3.2. By the recursive definition given
so far, it is obvious that Clauses (i) and (iii) hold, so we focus on the rest.
We commence with an expanded version of Clause (vi).

Lemma 3.5. For all α ≤ δ ≤ µ+, p ∈ Pδ and r ∈ Pα with r ≤α p � α, if we
let q := tδ,α(p)(r), then:

(1) q � β = tβ,α(p � β)(r) for all β ∈ [α, δ];
(2) Bq = Bp ∪Br;
(3) q � α = r;
(4) If α = 0, then q = p;
(5) p = (p � α) ∗ ∅δ iff q = r ∗ ∅δ;
(6) for all p′ ≤0

δ p, if r ≤0
α p
′ � α, then tδ,α(p′)(r) ≤δ tδ,α(p)(r).

Proof. Clause (3) follows from Clause (1) and the fact that tα,α(p�α) is the
identity function. Clause (5) follows from Clauses (2) and (3).

We now prove Clauses (1), (2), (4) and (6) by induction on δ ≤ µ+:

I The case δ = 0 is trivial, since, in this case, all the conditions under
consideration (and their corresponding B-sets) are empty, and all
the maps under consideration are the identity.

I The case δ = 1 follows from the fact that, by definition, t1,0(p)(r) =
p and t1,1(p)(r) = r.

I Suppose δ ≥ 2 is a successor ordinal, say δ = δ′ + 1, and that
the claim holds for δ′. Fix arbitrary α ≤ δ, p ∈ Pδ and r ∈ Pα
with r ≤α p � α. Denote q := tδ,α(p)(r). Recall that Pδ = Pδ′+1 was
defined by feeding (Pδ′ , `δ′ , cδ′) into Building Block II, thus obtaining
a Σ-Prikry triple (A, `A, cA) along with a forking projection (t, π),
such that each condition in the poset A = (A,E) is a pair (x, y) with
π(x, y) = x. Furthermore, by the definition of tδ,α, q = tδ,α(p)(r)

is equal to xa〈y〉, where

(x, y) := t(p � δ′, p(δ′))(tδ′,α(p � δ′)(r)).



18 ALEJANDRO POVEDA, ASSAF RINOT, AND DIMA SINAPOVA

In particular, q � δ′ = x = π(t(p � δ′, p(δ′))(tδ′,α(p � δ′)(r))), which,
by Definition 2.13(5), is equal to tδ′,α(p � δ′)(r).

(1) It follows that, for all β ∈ [α, δ),

q � β = (q � δ′) � β = tδ′,α(p � δ′)(r) � β = tβ,α(p � β)(r),

where the rightmost equality follows from the induction hypothesis.
In addition, the case β = δ is trivial.

(2) To avoid trivialities, assume α < δ. By Clause (1), q � δ′ =
tδ,α(p � δ′)(r). So, by the induction hypothesis, Bq�δ′ = Bp�δ′ ∪ Br,
and we are left with showing that δ ∈ Bq iff δ ∈ Bp. As q ≤δ p, we
have Bq ⊇ Bp, so the forward implication is clear. Finally, if δ /∈ Bp,
then p(δ′) = ∅, and hence

(x, y) = t(p � δ′, ∅)(tδ′,α(p � δ′)(r)).

It thus follows from Clause (f) of Building Block II together with
the fact that t satisfies Clause (6) of Definition 2.13 that (x, y) =
(tδ′,α(p � δ′)(r), ∅). Recalling that q = xa〈y〉, we conclude that
δ /∈ Bq, as desired.

(4) If α = 0, then, by the induction hypothesis, tδ′,0(p � δ′)(r) =
p � δ′, so that

(x, y) = t(p � δ′, p(δ′))(tδ′,0(p � δ′)(r))

= t(p � δ′, p(δ′))(p � δ′)

= (p � δ′, p(δ′)) = (x, y),

where the rightmost equality follows from Lemma 2.17. Altogether,
q = xa〈y〉 = p.

(6) To avoid trivialities, assume that tδ,α(p′)(r) 6= tδ,α(p)(r), so
that α < δ. By Clause (4), we may also assume that 0 < α. Fix p′ ≤0

δ

p with r ≤0
α p
′ �α. By the definition of ≤δ′+1, proving tδ,α(p′)(r) ≤δ

tδ,α(p)(r) amounts to verifying that (x′, y′) E (x, y), where

(x′, y′) := t(p′ � δ′, p′(δ′))(tδ′,α(p′ � δ′)(r)).

Now, by the induction hypothesis, tδ′,α(p′ �δ′)(r) ≤δ′ tδ′,α(p�δ′)(r).
So, since t(p � δ′, p(δ′)) is order-preserving, it suffices to prove that

(x′, y′) E t(p � δ′, p(δ′))(tδ′,α(p′ � δ′)(r)).

Denote a := (p�δ′, p(δ′)) and a′ := (p′�δ′, p′(δ′)). Then, by Clause (7)
of Definition 2.13, indeed

t(a′)(tδ′,α(p′ � δ′)(r)) E t(a)(tδ′,α(p′ � δ′)(r)).

I Suppose δ ∈ acc(µ+ + 1) is an ordinal such that, for all δ′ < δ,
β ∈ [α, δ′], p ∈ Pδ′ and r ∈ Pα with r ≤α p � α,

tβ,α(p � β)(r) = (tδ′,α(p � δ′)(r)) � β.
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Fix arbitrary α ≤ δ, p ∈ Pδ and r ∈ Pα with r ≤α p � α. Denote
q := tδ,α(p)(r). By our definition of tδ,α at the limit stage, we have:

q =
⋃
{tβ,α(p � β)(r) | α ≤ β < δ}.

By the induction hypothesis, 〈tβ,α(p � β)(r) | α ≤ β < δ〉 is a ⊆-
increasing sequence, and Btβ,α(p�β)(r) = Bp�β∪Br whenever α ≤ β <
δ. It thus follows that q is a legitimate condition, and Clauses (1),
(2), (4) and (6) are satisfied. �

Our next task is to verify Clauses (ii) and (v) of Goal 3.2:

Lemma 3.6. Suppose that δ ≤ µ+ is such that for all nonzero γ < δ,
(Pγ , cγ , `γ) is Σ-Prikry. Then:

• for all nonzero γ ≤ δ, (tδ,γ , πδ,γ) is a forking projection from (Pδ, `δ)
to (Pγ , `γ), where πδ,γ is defined as in Goal 3.2(ii);
• if δ < µ+, then (tδ,γ , πδ,γ) is furthermore a forking projection from

(Pδ, `δ, cδ) to (Pγ , `γ , cγ)
• if δ = γ + 1 > 1, then (tδ,γ , πδ,γ) has the weak mixing property.

Proof. Let us go over the clauses of Definition 2.13.
Clause (5) is covered by Lemma 3.5(3), and Clause (7) is covered by

Lemma 3.5(6). Clause (3) is obvious, since for all nonzero γ < δ and p ∈ Pγ ,
a straight-forward verification makes it clear that p∗∅δ is the greatest element
of {q ∈ Pδ | πδ,γ(q) = p}. In effect, Clause (6) follows from Lemma 3.5(5).

Thus, we are left with verifying Clauses (1),(2),(4) and (8). The next
claim takes care of the first three.

Claim 3.6.1. For all nonzero γ ≤ δ and p ∈ Pδ:
(1) πδ,γ forms a projection from Pδ to Pγ, and `δ = `γ ◦ πδ,γ;
(2) tδ,γ(p) is an order-preserving function from (Pγ ↓ (p � γ),≤γ) to (Pδ ↓ p,≤δ);
(3) for all n,m < ω and q ≤n+m

δ p, m(p, q) exists and, furthermore,

m(p, q) = tδ,γ(p)(m(p � γ, q � γ)).

Proof. We commence by proving (2) and (3) by induction on δ ≤ µ+:

I The case δ = 1 is trivial, since, in this case, γ = δ.
I Suppose δ = δ′ + 1 is a successor ordinal and that the claim holds

for δ′. Let γ ≤ δ and p ∈ Pδ be arbitrary. To avoid trivialities,
assume γ < δ. By the induction hypothesis, tδ′,γ(p � δ′) is an order-
preserving function from Pγ ↓ (p � γ) to Pδ′ ↓ (p � δ′).

Recall that Pδ = Pδ′+1 was defined by feeding (Pδ′ , `δ′ , cδ′) into
Building Block II, thus obtaining a Σ-Prikry triple (A, `A, cA) along
with the pair (t, π). Now, as t(p � δ′, p(δ′)) and tδ′,γ(p � δ′) are
both order-preserving, the very definition of tδ,γ(p � γ) and ≤δ′+1

implies that tδ,γ(p � γ) is order-preserving. In addition, as (x, y) is

a condition in A iff xa〈y〉 ∈ Pδ and as t(p � δ′, p(δ′)) is an order-
preserving function from Pδ′ ↓ (p � δ′) to A ↓ (p � δ′, p(δ′)), we infer
that, for all r ≤γ p � γ, tδ,γ(p � γ)(r) is in Pδ ↓ p.
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Let q ≤n+m
δ p for some n,m < ω. Let

(x, y) := m((p � δ′, p(δ′)), (q � δ′, q(δ′))).

Trivially, m(p, q) exists and is equal to xa〈y〉. We need to show that
m(p, q) = tδ,γ(p)(m(p � γ, q � γ)). By Definition 2.13(4),

(x, y) = t(p � δ′, p(δ′))(m(p � δ′, q � δ′)).

By the induction hypothesis,

m(p � δ′, q � δ′) = tδ′,γ(p � δ′)(m(p � γ, q � γ)),

and so it follows that

(x, y) = t(p � δ′, p(δ′))(tδ′,γ(p � δ′)(m(p � γ, q � γ))).

Thus, by the definition of tδ,γ and the above equation, we have that

tδ,γ(p)(m(p � γ, q � γ)) is indeed equal to xa〈y〉.
I Suppose δ ∈ acc(µ+ + 1) is an ordinal for which the claim holds

below δ. Let γ ≤ δ and p ∈ Pδ be arbitrary. To avoid trivialities,
assume γ < δ. By Lemma 3.5(1), for every r ∈ Pγ ↓ (p � γ):

tδ,γ(p)(r) =
⋃

γ≤δ′<δ
tδ′,γ(p � δ′)(r).

As for all q, q′ ∈ Pδ, q ≤δ q′ iff ∀δ′ < δ(q � δ′ ≤δ′ q′ � δ′), the induction
hypothesis implies that tδ,γ(p) is an order-preserving function from
Pγ ↓ (p � γ) to Pδ ↓ p;

Finally, let q ≤δ p; we shall show that m(p, q) exists and is, in fact,
equal to tδ,γ(p)(m(p � γ, q � γ)). By Lemma 3.5(1) and the induction
hypothesis,

tδ,γ(p)(m(p � γ, q � γ)) =
⋃

γ≤δ′<δ
m(p � δ′, q � δ′),

call it r. We shall show that r plays the role of m(p, q).
By the definition of ≤δ, it is clear that q ≤mδ r ≤nδ p, so it remains

to show that it is the greatest condition in (P pδ )n to satisfy this. Fix
an arbitrary s ∈ (P pδ )n with q ≤mδ s. For each δ′ < δ, q � δ′ ≤mδ′
s � δ′ ≤nδ′ p � δ′, so that s � δ′ ≤δ′ m(p � δ′, q � δ′), and thus s ≤δ r.
Altogether this shows that r = m(p, q).

This completes the proof of Clauses (2) and (3) above.

We are left to prove (1). The case γ = δ is trivial, so assume γ < δ. Clearly,
πδ,γ is order-preserving and also πδ,γ(∅δ) = ∅γ . Let p ∈ Pδ and q ∈ Pγ be
such that q ≤γ πδ,γ(p). Set q∗ := tδ,γ(p)(q). By Lemma 3.5(3), πδ,γ(q∗) = q
and by Clause (2) of this claim, q∗ ≤δ p. Altogether, πδ,γ is indeed a
projection. For the second part, recall that, for all β ≤ µ+, `β := `1 ◦ πβ,1,
hence `δ = `1 ◦ πδ,1 = `1 ◦ (πγ,1 ◦ πδ,γ) = (`1 ◦ πγ,1) ◦ πδ,γ = `γ ◦ πδ,γ . �

We are left with verifying Clause (8) of Definition 2.13 to show that
(tδ,γ , πδ,γ) is a forking projection from (Pδ, `δ, cδ) to (Pγ , `γ , cγ).
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Claim 3.6.2. Suppose δ 6= µ+. For all p, p′ ∈ Pδ with cδ(p) = cδ(p
′) and all

nonzero γ ≤ δ:
• cγ(p � γ) = cγ(p′ � γ), and

• tδ,γ(p)(r) = tδ,γ(p′)(r) for every r ∈ (Pγ)p�γ0 ∩ (Pγ)p
′�γ

0 .

Proof. By induction on δ < µ+:

I The case δ = 1 is trivial, since, in this case, γ = δ.
I Suppose δ = δ′ + 1 is a successor ordinal and that the claim holds

for δ′. Fix an arbitrary pair p, p′ ∈ Pδ with cδ(p) = cδ(p
′).

Recall that Pδ = Pδ′+1 was defined by feeding (Pδ′ , `δ′ , cδ′) into
Building Block II, thus obtaining a Σ-Prikry triple (A, `A, cA) along
the pair (t, π). By the definition of cδ′+1, we have

cA(p � δ′, p(δ′)) = cδ(p) = cδ(p
′) = cA(p′ � δ′, p′(δ′)).

So, as (t, π) is a forking projection from (A, `A, cA) to (Pδ′ , `δ′ , cδ′),
we have cδ′(p � δ′) = cδ′(p

′ � δ′), and, for all r ∈ (Pδ′)
p�δ′

0 ∩ (Pδ′)
p′�δ′

0 ,
t(p � δ′, p(δ′))(r) = t(p′ � δ′, p′(δ′))(r).

Now, as cδ′(p � δ′) = cδ′(p
′ � δ′), the induction hypothesis implies

that cγ(p � γ) = cγ(p′ � γ) for all nonzero γ ≤ δ′. In addition, the
case γ = δ is trivial.

Finally, fix a nonzero γ ≤ δ and r ∈ (Pγ)p�γ0 ∩ (Pγ)p
′�γ

0 , and let
us prove that tδ,γ(p)(r) = tδ,γ(p′)(r). To avoid trivialities, assume

γ < δ. It follows from the definition of tδ,γ that tδ,γ(p)(r) = xa〈y〉
and tδ,γ(p′)(r) = x′a〈y′〉, where:

– (x, y) := t(p � δ′, p(δ′))(tδ′,γ(p � δ′)(r)), and
– (x′, y′) := t(p′ � δ′, p′(δ′))(tδ′,γ(p′ � δ′)(r)).

But we have already pointed out that the induction hypothesis im-
plies that tδ′,γ(p�δ′)(r) = tδ′,γ(p′ �δ′)(r), call it, r′. So, we just need
to prove that t(p � δ′, p(δ′))(r′) = t(p′ � δ′, p′(δ′))(r′). But we also
have cA(p � δ, p(δ′)) = cδ(p) = cδ(p

′) = cA(p′ � δ, p′(δ′)) and by our

choice of r and Clause (2) of Claim 3.6.1, r′ ∈ (Pδ′)
p�δ′

0 ∩ (Pδ′)
p′�δ′

0 .
So, as (t, π) is a forking projection from (A, `A, cA) to (Pδ′ , `δ′ , cδ′),
Clause (8) of Definition 2.13 implies that

t(p � δ′, p(δ′))(r′) = t(p′ � δ′, p′(δ′))(r′),

as desired.
I Suppose δ ∈ acc(µ+) is an ordinal for which the claim holds below
δ. For any condition q ∈

⋃
δ′≤δ Pδ′ , define a function fq : Bq → Hµ

via fq(δ
′) := cδ′(q � δ′). Now, fix an arbitrary pair p, p′ ∈ Pδ with

cδ(p) = cδ(p
′). By the definition of cδ this means that

{(φδ(γ), cγ(p � γ)) | γ ∈ Bp} = {(φδ(γ), cγ(p′ � γ)) | γ ∈ Bp′}.
As φδ is injective, fp = fp′ . Next, let γ ≤ δ be nonzero; we need to
show that cγ(p � γ) = cγ(p′ � γ). The case γ = δ is trivial, so assume
γ < δ.
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Now, if dom(fp) \ γ is nonempty, then for δ′ := min(dom(fp) \ γ),
we have cδ′(p � δ′) = fp(δ

′) = fp′(δ
′) = cδ′(p

′ � δ′), and then the
induction hypothesis entails cγ(p � γ) = cγ(p′ � γ). In particular, if
dom(fp) is unbounded in δ, then cγ(p � γ) = cγ(p′ � γ) for all γ ≤ δ.

Next, suppose that dom(fp) is bounded in δ and let ε < δ be
the least ordinal to satisfy dom(fp) ⊆ ε. We already know that
cγ(p � γ) = cγ(p′ � γ) for all γ < ε, and now prove by induction that
cγ(p � γ) = cγ(p′ � γ) for all γ ∈ [ε, δ). For a successor ordinal γ, this
follows from Clauses (f) and (g) of Building Block II, and for a limit
ordinal γ, this follows from the fact that the injectivity of φγ and
the equality fp�γ = fp = fp′ = fp′�γ implies that cγ(p�γ) = cγ(p′ �γ).

Finally, fix a nonzero γ ≤ δ and r ∈ (Pγ)p�γ0 ∩ (Pγ)p
′�γ

0 , and let
us prove that tδ,γ(p)(r) = tδ,γ(p′)(r). To avoid trivialities, assume
γ < δ. We already know that, for all δ′ ∈ [γ, δ), cδ′(p � δ′) = cδ′(p

′ �
δ′), and so the induction hypothesis implies that tδ′,γ(p � δ′)(r) =
tδ′,γ(p′ � δ′)(r), and then by Lemma 3.5(1):

tδ,γ(p)(r) =
⋃

γ≤δ′<δ
tδ′,γ(p � δ′)(r) =

=
⋃

γ≤δ′<δ
tδ′,γ(p′ � δ′)(r) = tδ,γ(p′)(r),

as desired. �

Claim 3.6.3. If δ = β + 1 > 1, then (tδ,β, πδ,β) has the weak mixing
property.

Proof. Once again, recall that Pβ+1 was obtained by feeding (Pβ, `β, cβ) into
Building Block II, thus obtaining a Σ-Prikry triple (A, `A, cA), along with a
pair (t, π) having the weak mixing property. Let tp be a type over (t, π)
witnessing the weak mixing property. For each condition p ∈ Pβ+1, set
tpβ+1(p) := tp(p �β, p(β)). The canonical isomorphism from A to Pβ+1 (i.e.,

(x, y) 7→ xa〈y〉) makes it clear that tpβ+1 is a type over (tβ+1,β, πβ+1,β)
witnessing the weak mixing property. �

This completes the proof of Lemma 3.6. �

Definition 3.7. For each nonzero β < µ+, we let tpβ+1 be the witness
to the weak mixing property of (tβ+1,β, πβ+1,β), as defined in the proof of
Subclaim 3.6.3.

Recalling Definition 2.3(2), for all nonzero δ ≤ µ+ and n < ω, we need

to identify a candidate for a dense subposet P̊δn = (P̊δn,≤δ) of Pδn. We do
this next.
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Definition 3.8. Let n < ω. Set P̊1n := 1(Q̊n).11 Then, for each δ ∈ [2, µ+],

define P̊δn by recursion:

P̊δn :=

{
{p ∈ Pδ | πδ,β(p) ∈ P̊βn & mtpβ+1(p) = 0}, if δ = β + 1;

{p ∈ Pδ | πδ,1(p) ∈ P̊1n & ∀γ ∈ Bp mtpγ(πδ,γ(p)) = 0}, otherwise.

Lemma 3.9. Let n < ω and 1 ≤ β < δ ≤ µ+. Then:

(1) πδ,β“P̊δn ⊆ P̊βn;

(2) For every p ∈ P̊βn, p ∗ ∅δ ∈ P̊δn.

Proof. By a straight-forward induction, relying on Clause (4) of Defini-
tion 2.23. �

We are now left with addressing Clause (iv) of Goal 3.2. Prior to that we
will provide a sufficient condition securing that for each δ ∈ acc(µ+ +1), the
pair (Pδ, `δ) has property D. For this, we establish a version of the Weak
Mixing Property (Definition 2.25) for limit stages.

Lemma 3.10. Let δ ∈ acc(µ+ + 1). For all a ∈ Pδ, n < ω, ~r, and p′ ≤0

πδ,1(a), and for every function g : Wn(πδ,1(a)) → Pδ ↓ a, if all of the
following hold:

(0) 〈Bg(rξ) | ξ < χ〉 is ⊆-weakly increasing. For each γ in B :=
⋃
ξ<χBg(rξ),

we denote ιγ := min{ξ < χ | γ ∈ Bg(rξ)};
(1) ~r = 〈rξ | ξ < χ〉 is a good enumeration of Wn(πδ,1(a));
(2) 〈πδ,1(g(rξ)) | ξ < χ〉 is diagonalizable with respect to ~r as witnessed

by p′;
(3) for all γ ∈ B and ξ < χ,

dom(tpγ(πδ,γ(g(rξ)))) = 0, ξ < ιγ ;
dom(tpγ(πδ,γ(g(rξ)))) ≥ 1, ξ = ιγ ;
dom(tpγ(πδ,γ(g(rξ)))) > (supη<ξ dom(tpγ(πδ,γ(g(rη))))) + 1, ξ > ιγ .

(4) for all γ ∈ B, ξ ∈ (ιγ , χ), and i ≤ supη<ξ dom(tpγ(πδ,γ(g(rη)))),

i ≥ dom(tpγ(πδ,γ(a))) =⇒ tpγ(πδ,γ(g(rξ)))(i) ≤ mtpγ(πδ,γ(a));

(5) for all γ ∈ B, supιγ≤ξ<χ mtpγ(πδ,γ(g(rξ))) < ω,

then there exists b ∈ Pδ such that:

(a) πδ,1(b) = p′;
(b) b ≤0

δ a;
(c) for all q′ ∈Wn(p′), tδ,1(b)(q′) ≤0

δ g(w(πδ,1(a), q′)).

Proof. Let a ∈ Pδ, n < ω, ~r, p′ and g : Wn(a � 1) → Pδ ↓ a be as above.
Let 〈γτ | τ < θ〉 be the increasing enumeration of B. From Goal 3.2(i) and
χ < µ, we infer that θ < µ. For each τ < θ:

• as γτ is a successor ordinal, we let βτ denote its predecessor;

11Here, Q̊n is obtained from Clause (2) of Definition 2.3 with respect to the triple
(Q, `, c) given by Building Block I.
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• for every ξ < χ, let rτξ := tβτ ,1(a � βτ )(rξ). By Fact 2.19, ~rτ := 〈rτξ |
ξ < χ〉 is a good enumeration of Wn(a � βτ );
• derive a map gτ : Wn(a � βτ )→ Pγτ ↓ (a � γτ ) via

gτ (rτξ ) := g(rξ) � γτ .

Claim 3.10.1. Suppose there is a sequence 〈(bτ , pτ ) | τ < θ〉 ∈
∏
τ<θ(Pγτ ×

Pβτ ) satisfying that for all τ < θ:

(I) b0 � 1 = p0 � 1 = p′;
(II) bτ � γτ ′ = bτ ′ for all τ ′ < τ ;

(III) bτ witnesses the conclusion of Definition 2.25 with respect to the
tuple (a � γτ , ~rτ , pτ , gτ , ιγτ ). In particular, pτ ≤0

βτ
a � βτ diagonalizes

〈gτ (rτξ ) � βτ | ξ < χ〉.
Then there is b ∈ Pδ as in the conclusion of the Lemma.

Proof. By (II) above, we may let b∗ :=
⋃
τ<θ bτ , so that b∗ ∈ Pε for ε :=

dom(b∗). For each τ < θ, Clauses (II) and (III) yield

b∗ � γτ = bτ ≤0
γτ a � γτ ,

and hence b∗ ≤0
ε (a � ε). So we may let b := tδ,ε(a)(b∗), and infer from (I)

that b � 1 = p′. Also, we have that b � γ ≤0
γ a � γ, for each γ ∈ Ba. This

shows that Clauses (a) and (b) of the lemma hold.
We are now left with verifying Clause (c). Let q′ ∈ Wn(p′); we want

to show that tδ,1(b)(q′) ≤0
δ g(w(a � 1, q′)). Note that by Lemma 3.5(2),

Ba ⊆ Bb∗ = Bb, so that b = b∗ ∗ ∅δ. Hence, {γτ | τ < θ} is cofinal in Bb, and
so it suffices to prove that, for each τ < θ,

tδ,1(b)(q′) � γτ ≤0
γτ g(w(a � 1, q′)) � γτ .

For each τ < θ, combining Clause (II) with Lemma 3.5(1) we have

tδ,1(b)(q′) � γτ = tγτ ,1(b � γτ )(q′) = tγτ ,1(bτ )(q′),

hence it suffices to check that

(?) tγτ ,1(bτ )(q′) ≤0
γτ g(w(a � 1, q′)) � γτ .

By the definition of tγτ ,1 (see page 16, especially equation (*)) it follows

(??) tγτ ,1(bτ )(q′) = tγτ ,βτ (bτ )(tβτ ,1(bτ � βτ )(q′)).

Since bτ � 1 = p′ and q′ ∈Wn(p′), Lemma 3.6 yields r := tβτ ,1(bτ �βτ )(q′)
is in Wn(bτ � βτ ). Combining equation (??) with (III), we infer that

tγτ ,1(bτ )(q′) = tγτ ,βτ (bτ )(r) ≤0
γτ gτ (w(a � βτ , r)) = g(w(a � 1, q′)) � γτ ,

where the rightmost equality follows from the definition of gτ and the fact
that r � 1 = q′. This verifies equation (?) and yields the claim. �

Let us now argue by induction that such 〈(bτ , pτ ) | τ < θ〉 exists.

Claim 3.10.2. There is a pair (b0, p
0) for which Clauses (I)–(III) hold.
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Proof. Clause (II) is trivial at this stage. Setting p0 := tβ0,1(a�β0)(p′) takes
care of the second part of Clause (I), and we shall come back to the first
part towards the end. Now, let us examine the tuple (a � γ0, ~r

0, p0, g0, ιγ0)
against the clauses of Definition 2.25 with respect to the forking projection
(tγ0,β0 , πγ0,β0): Clause (1) is obvious and Clauses (3), (4) and (5) follow
combining the corresponding clauses in the lemma with the definition of g0.

Regarding Clause (2), we claim that p0 diagonalizes 〈g0(r0
ξ ) � β0 | ξ < χ〉.

To that effect we will check (α) and (β) of Proposition 2.22, when this
is regarded with respect to the forking projection (tβ0,1, πβ0,1), and the
parameters a � β0, ~r0, 〈g0(r0

ξ ) � β0 | ξ < χ〉, p′ and p0, respectively.

(α) Note that g0(r0
ξ ) � 1 = g(rξ) � 1, for each ξ < χ. Therefore,

Clause (1) implies that p′ diagonalizes 〈g0(r0
ξ ) � 1 | ξ < χ〉.

(β) Note that by Clause (1) of the lemma, p′ ≤0
1 a�1, hence p0 ≤0

β0
a�β0.

Let q′ ∈ Wn(p′). Again by Clause (1), q′ ≤0
1 g(rξ) � 1, where ξ is

the unique index such that rξ = w(a � 1, q′ � 1).
Finally, combining Lemma 3.5(5) and Lemma 3.6 we have

tβ0,1(p0)(q′) ≤0
β0
tβ0,1(a � β0)(g(rξ) � 1) = g(rξ) � 1 ∗ ∅β0 = g0(r0

ξ ) � β0,

where the above equalities follow from β0 < min(B).

Altogether, (a�γ0, ~r
0, p0, g0, ιγ0) witnesses Clauses (1)–(5) of Definition 2.25.

Thus, appealing to Lemma 3.6, we obtain b ∈ Pγ0 such that b � β0 = p0 and
b ≤0

γ0
a � γ0 that witnesses the conclusion of Definition 2.25. Clearly, b0 := b

and p0 are as wanted. �

Suppose now τ < θ, and that 〈(bτ ′ , pτ
′
) | τ ′ < τ〉 has been constructed

maintaining (I)–(III). Set b∗ :=
⋃
τ ′<τ bτ ′ and ε := dom(b∗). Note that

ε ≤ βτ , as γτ ∈ nacc(µ+). Also, using (I) and (II) of the induction, b∗ ∈ Pε
and πε,1(b∗) = p′.

Claim 3.10.3. There is a pair (bτ , p
τ ) satisfying Clauses (I)–(III).

Proof. We commence checking (III). As in the previous claim, it suffices to
show that pτ := tβτ ,ε(a � βτ )(b∗) diagonalizes 〈gτ (rτξ ) � βτ | ξ < χ〉.

Once again, we want to appeal to Proposition 2.22, but this time regarded
with respect to (tβτ ,1 πβτ ,1), a � βτ , ~rτ , 〈gτ (rτξ ) � βτ | ξ < χ〉, p′ and pτ . The

verification of Clause (α) is exactly the same as in Claim 3.10.2, so we focus
on Clause (β). By (II) and (III) of the induction hypothesis, b∗ ≤0

ε a � ε and
b∗ � 1 = p′. Hence, pτ ∈ Pβτ , pτ ≤0

βτ
a � βτ and pτ � 1 = p′.

Let q′ ∈Wn(p′). Our aim is to show that

tβτ ,1(pτ )(q′) ≤0
βτ gτ (rτξ ) � βτ ,

for the unique index ξ such that rξ = w(a � 1, q′).
By virtue of Lemma 3.5(5), Btβτ ,1(pτ )(q′) = Bpτ = Bb∗ . Hence, it will be

enough to check that tβτ ,1(pτ )(q′) � ε ≤0
ε gτ (rτξ ) � ε.
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For each τ ′ < τ , combining (II) of the induction hypothesis with Clauses (1)
and (3) of Lemma 3.5 we have

tβτ ,1(pτ )(q′) � γτ ′ = tγτ ′ ,1(bτ ′)(q
′) = tγτ ′ ,βτ ′ (bτ ′)(sτ ′),

where sτ ′ := tβτ ′ ,1(bτ ′ � βτ ′)(q′).
12

Thus, by (III) of our induction hypothesis,

tβτ ,1(pτ )(q′) � γτ ′ = tγτ ′ ,βτ ′ (bτ ′)(sτ ′) ≤
0
γτ ′

gτ ′(r
τ ′
ξ ),

where ξ is the unique index such that rτ
′
ξ = w(a � βτ ′ , sτ ′).

Since gτ (rτξ )�γτ ′ = gτ ′(r
τ ′
ξ ), the above expression actually yields tβτ ,1(pτ )(q′)�

γτ ′ ≤0
γ′τ
gτ (rτξ ) � γτ ′ . Altogether, we have shown that

tβτ ,1(pτ )(q′) � ε ≤0
ε gτ (rτξ ) � ε.

Finally, note that

rξ = rτ
′
ξ � 1 = w(a � βτ ′ , sτ ′) � 1 = w(a � 1, q′),

where the last equality follows from Lemma 3.6 and sτ ′ � 1 = q′.

The above shows that (a�γτ , ~rτ , pτ , gτ , iγτ ) fulfills the assumptions of Def-
inition 2.25 with respect the pair (tγτ ,βτ , πγτ ,βτ ). Appealing to Lemma 3.6
we obtain bτ ≤0

γτ a � γτ with bτ �βτ = pτ such that the pair (bτ , p
τ ) witnesses

(III).

Let us now show that (bτ , p
τ ) satisfies (I) and (II). By (II) of the induction

hypothesis and the definition of pτ , for each τ ′ < τ ,

bτ � γτ ′ = (pτ � ε) � γτ ′ = b∗ � γτ ′ = bτ ′ .

Similarly, by (I) of the induction hypothesis, bτ � 1 = bτ ′ � 1 = p′. �

The above completes the induction and yields the lemma. �

The following technical lemma yields a sufficient condition for the pair
(Pδ, `δ) to have property D in case δ ∈ acc(µ+ + 1).

Lemma 3.11. Let δ ∈ acc(µ+ + 1), a ∈ Pδ, n < ω and ~s = 〈sξ | ξ < χ〉
be a good enumeration of Wn(a). Set l := `δ(a). Suppose that D is a set

of conditions in (̊Pδ)l+n which is dense in (Pδ)l+n. Then I has a winning
strategy for the game aPδ(a,~s,D).

Proof. Set p := πδ,1(a) and rξ := πδ,1(sξ) for each ξ < χ. By Clauses (4)
and (5) of Definition 2.13, ~r = 〈rξ | ξ < χ〉 is a good enumeration of Wn(p).

We now describe our strategy for I. Suppose that ξ < χ and that 〈(aη, bη) |
η < ξ〉 is an initial play of the game aPδ(a,~s,D); we need to define aξ.

I If ξ = 0, then let p0 be the 0th-move of I according to some winning
strategy in aP1(p, ~r), which is available by virtue of Building Block I. Also,
let t0 be a condition in P1 such that t0 ≤1 p0, r0.13

12For this latter equality, see equation (??) above.
13Recall that this is part of the rules of aP1(p, ~r) (see Definition 2.10).
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If Ba is empty, then let a0 := tδ,1(a)(p0) and z0 := tδ,1(a)(t0). By
Lemma 3.6 z0 ≤δ a0, s0, hence a0 is a legitimate move for I.

Suppose now that Ba is nonempty, and let 〈γτ | τ ≤ θ〉 be the increasing
enumeration of the closure of Ba. For every τ ∈ nacc(θ+1), γτ is a successor
ordinal, so we let βτ denote its predecessor. By recursion on τ ≤ θ, we shall
define a coherent sequence14 〈(aτ0 , zτ0 ) | τ ≤ θ〉 ∈

∏
τ≤θ(Pγτ ×Pγτ ), and then

we shall let a0 := tδ,γθ(a)(aθ0) and z0 := tδ,γθ(a)(zθ0).
The idea is to craft the sequence 〈aτ0 | τ ≤ θ〉 so that for all γ ∈ Ba, a0 � γ

satisfies (2)–(4) of Lemma 3.10. On the other hand, 〈zτ0 | τ ≤ θ〉 will provide
a sequence of auxiliary conditions witnessing that zτ0 ≤γτ aτ0 , s0 � γτ . This
will ensure at the end that a0 is a legitimate move for I.

II Set %0
0 := dom(tpγ0

(a � γ0)) + ω + 1, and then let

a0
0 := tγ0,1(a � γ0)(p0)y%0

0 ,

z0
0 := tγ0,1(a � γ0)(t0)y%0

0 ,

where the y operation is provided by Definition 2.23(5) with respect to the
type tpγ0

over the forking projection (tγ0,β0 , πγ0,β0).15

Since p0 ≤0
1 a � 1, a0

0 ∈ Pγ0 and also a0
0 ≤0

γ0
a � γ0. Similarly, z0

0 ∈ Pγ0 .

Claim 3.11.1. z0
0 ≤γ0 a

0
0, s0 � γ0.

Proof. Combining Clause (5)(a) of Definition 2.23 with Lemma 3.6,

z0
0 ≤0

γ0
tγ0,1(a � γ0)(t0) ≤0

γ0
tγ0,1(a � γ0)(r0) = s0 � γ0.

On the other hand, tγ0,1(a � γ0)(t0) ≤γ0 tγ0,1(a � γ0)(p0) and

dom(tpγ0
(tγ0,1(a � γ0)(t0))) = dom(tpγ0

(tγ0,1(a � γ0)(p0))),

where this last equality follows from Clause (3) of Definition 2.23.
Combining this with Definition 2.23(6) we get z0

0 ≤γ0 a
0
0, as desired. �

Claim 3.11.2. For all i ∈ [dom(tpγ0
(a � γ0)),dom(tpγ0

(a0
0))],

tpγ0
(a0

0)(i) ≤ mtpγ0
(a � γ0).

Proof. Let i be as above. By Definition 2.23(3), dom(tpγ0
(tγ0,1(a�γ0)(p0)) =

dom(tpγ0
(a � γ0)). So, combining Clauses (2) and (5) of Definition 2.23

tpγ0
(a0

0)(i) ≤ mtpγ0
(tγ0,1(a � γ0)(p0)) ≤ mtpγ0

(a � γ0),

as desired. �

II For every τ < θ such that both aτ0 and zτ0 have already been defined,

set %τ+1
0 := dom(tpγτ+1

(a � γτ+1)) + ω + 1, and then let

aτ+1
0 := tγτ+1,γτ (a � γτ+1)(aτ0)y%τ+1

0 ,

zτ+1
0 := tγτ+1,γτ (a � γτ+1)(zτ0 )y%τ+1

0 .

14Namely, for each τ ′ ≤ τ , aτ0 � τ
′ = aτ

′
0 and zτ0 � τ

′ = zτ
′

0 .
15Note that tγ0,1(a � γ0)(p0) = tγ0,β0(a � γ0)(tβ0,1(a � β0)(p0)) (see (*) on page 16).
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where the y operation is with respect to the type tpγτ+1
.16

Claim 3.11.3. For all τ ′ ≤ τ , aτ+1
0 � γτ ′ = aτ

′
0 and zτ+1

0 � γτ ′ = zτ
′

0 .

Proof. Let τ ′ ≤ τ . By Clause (5)(a) of Definition 2.23 and Lemma 3.5(1),

aτ+1
0 � βτ+1 = tγτ+1,γτ (a � γτ+1)(aτ0) � βτ+1 = tβτ+1,γτ (a � βτ+1)(aτ0).

Hence, Lemma 3.5(5) yields aτ+1
0 �γτ = aτ0 . Using the induction hypothesis,

we get aτ+1
0 � γτ ′ = aτ

′
0 . The argument for zτ+1

0 is the same. �

Claim 3.11.4. zτ+1
0 ≤γτ+1 a

τ+1
0 , s0 � γτ+1.

Proof. Recall that by the induction hypothesis, zτ0 ≤γτ aτ0 , s0 � γτ . Thus,
Clause (5) of Definition 2.23 and Lemma 3.6 combined yield

zτ+1
0 ≤0

γτ+1
tγτ+1,γτ (a�γτ+1)(zτ0 ) ≤0

γτ+1
tγτ+1,γτ (a�γτ+1)(s0 �γτ ) = s0 �γτ+1.

Similarly, Lemma 3.6 yields

tγτ+1,γτ (a � γτ+1)(zτ0 ) ≤γτ+1 tγτ+1,γτ (a � γτ+1)(aτ0).

Also, by Clause (3) of Definition 2.23 and the remark made at Footnote 16

dom(tpγτ+1
(tγτ+1,γτ (a � γτ+1)(zτ0 ))) = dom(tpγτ+1

(tγτ+1,γτ (a � γτ+1)(aτ0)).

Therefore, Definition 2.23(6) yields zτ+1
0 ≤γτ+1 a

τ+1
0 , as desired. �

Finally, the following can be proved exactly as in Claim 3.11.2:

Claim 3.11.5. For all i ∈ [dom(tpγτ+1
(a � γτ+1)),dom(tpγτ+1

(aτ+1
0 ))],

tpγτ+1
(aτ+1

0 )(i) ≤ mtpγτ+1
(a � γτ+1).

II For every τ ∈ acc(θ + 1), let aτ0 :=
⋃
τ ′<τ a

τ ′
0 and zτ0 :=

⋃
τ ′<τ z

τ ′
0 .

Thanks to the induction hypothesis, 〈(aτ ′0 , zτ
′

0 ) | τ ′ ≤ τ〉 is clearly coherent.
Clearly, zτ0 ≤γτ aτ0 and arguing as in Claim 3.11.4 we have zτ0 ≤0

γτ s0 � γτ .

At the end of the recursion, we define a0 and z0 as mentioned before.
Note that by our construction z0 witnesses that a0 is a legitimate move for
I so, in response, II plays a condition b0 in D extending a0 and satisfying
b0 ≤0

δ s0. Finally, note that Ba ⊆ Ba0 ⊆ Bb017 and for every γ ∈ Ba,
dom(tpγ(a � γ)) + 1 < dom(tpγ(a0 � γ)).

Also, for all i ∈ [dom(tpγ(a � γ)),dom(tpγ(a0 � γ))],

tpγ(a0 � γ)(i) ≤ mtpγ(a � γ).

I Suppose that 0 < ξ < χ. Recall that 〈(aη, bη) | η < ξ〉 is an initial
play of the game and that we want to define aξ. To that effect, let pξ the

ξth-move of I in the game aP1(p, ~r), provided 〈(aη � 1, bη � 1) | η < ξ〉 gathers
the previous ones. Let tξ be such that tξ ≤1 pξ, sξ and set Bξ :=

⋃
η<ξ Bbη .

16Note that tγτ+1,γτ (a � γτ+1)(aτ0) = tγτ+1,βτ+1(a � γτ+1)(tβτ+1,γτ (a � βτ+1)(aτ0)).
17The inclusionBa0 ⊆ Bb0 is obvious. For the other we use Clause (4) of Definition 2.23,

noting that for all γ ∈ Ba, dom(tpγ(a0 � γ)) 6= 0.
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If Bξ is empty then again set aξ := tδ,1(a)(pξ) and zξ := tδ,1(a)(tξ) and
argue as in the case ξ = 0. Otherwise, Bξ is nonempty and we let 〈γτ | τ ≤ θ〉
be the increasing enumeration of the closure of Bξ. By recursion on τ ≤ θ,
we define a coherent sequence 〈(aτξ , zτξ ) | τ ≤ θ〉 ∈

∏
τ≤θ(Pγτ × Pγτ ), and

then we shall let aξ := tδ,γθ(a)(aθξ) and zξ := tδ,γθ(a)(zθξ ). The construction
and the subsequent verifications are the same as in the case ξ = 0, so we
skip them. The only difference now is that, for each τ ∈ nacc(θ+ 1), we set
%τξ := (supη<ξ dom(tpγτ (bη � γτ ))) + ω + 1.

Thereby, we get a condition aξ which is a legitimate move for I and, in
response, II plays a condition bξ in D extending aξ and satisfying bξ ≤0

δ sξ.
Once again, aξ � 1 = pξ, Bξ ⊆ Baξ ⊆ Bbξ and for all γ ∈ Bξ,

(††) (sup
η<ξ

dom(tpγ(bη � γ))) + 1 < dom(tpγ(aξ � γ)).

Also, for all i ∈ [dom(tpγ(a � γ)), supη<ξ dom(tpγ(bη � γ))],

(† † †) tpγ(aξ � γ)(i) ≤ mtpγ(a � γ).18

At the end we obtain a sequence 〈(aξ, bξ) | ξ < χ〉 which is a play in the
game aPδ(a,~s,D). By construction, for each ξ < χ, aξ � 1 = pξ, so that
〈bξ � 1 | ξ < χ〉 is diagonalizable with respect to ~r. Let p′ ≤0

1 πδ,1(a) be a
witness for this latter fact.

Our next task is to show that 〈bξ | ξ < χ〉 is diagonalizable and that the
corresponding witness b fulfills the requirements of the lemma.

Claim 3.11.6. The tuple (a,~r, p′, g, Bχ) meets the requirements of Lemma 3.10,
where g : Wn(πδ,1(a))→ Pδ ↓ a is defined via g(rξ) := bξ.

Proof. Let us go over the clauses of Lemma 3.10: Clause (0) holds by the
construction of 〈Bbξ | ξ < χ〉, Clause (1) is obvious and Clause (2) follows
from the discussion of the previous paragraph. So, let us address the rest.

For each γ ∈ Bχ, denote ιγ := min{ξ < χ | γ ∈ Bbξ}.
(3): Let γ ∈ Bχ and ξ < χ:

• If ξ < ιγ then γ /∈ Bbξ and so bξ � γ = dbξ � βePγ , where γ = β + 1.
Thus, Lemma 3.6 and Definition 2.23(4) yield dom(tpγ(bξ � γ)) = 0.

• If ξ = ιγ , then γ ∈ Bbξ and so bξ � γ 6= dbξ � βePγ , where γ = β + 1.
Again, Lemma 3.6 and Definition 2.23(4) yield dom(tpγ(bξ �γ)) ≥ 1.

• If ξ > ιγ , then γ ∈ Bbιγ ⊆ Bξ.
19 Combining (††) above with bξ ≤δ aξ

and Clause (2) of Definition 2.23 we get

(sup
η<ξ

dom(tpγ(bη � γ))) + 1 < dom(tpγ(bξ � γ)).

(4): Let γ ∈ Bχ, ιγ < ξ < χ and i be as in Clause (4) of Lemma 3.10. By
definition, γ ∈ Bbιγ ⊆ Bξ, hence († † †) yields tpγ(aξ � γ)(i) ≤ mtpγ(a � γ).

18For details about the verification of († † †), see Claim 3.11.2.
19Recall that Bξ =

⋃
η<ξ Bbη .
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Combining this with Definition 2.23(3) and bξ ≤δ aξ we arrive at

tpγ(bξ � γ)(i) ≤ tpγ(aξ � γ)(i) ≤ mtpγ(a � γ).

(5): Let γ ∈ B. For all ξ such that ιγ ≤ ξ < χ, then γ ∈ Bbξ . Since

for all such ξ’s, bξ is a condition in D ⊆ (̊Pδ)l+n then mtpγ(bξ � γ) = 0 (see
Definition 3.8). Thus, clearly, supιγ≤ξ<χ mtpγ(bξ � γ) < ω.

The above completes the verification of the claim. �

Combining Claim 3.11.6 with Lemma 3.10 we get a condition b witnessing
Clauses (a)–(c) of the latter. Note that thanks to (a) and (c) we can appeal
to Proposition 2.22 with respect to (tδ,1, πδ,1), a, ~s, 〈bξ | ξ < χ〉, p′ and b
and conclude that b diagonalizes 〈bξ | ξ < χ〉 with respect to ~s. �

Corollary 3.12. For every δ ∈ acc(µ+ +1), if (̊Pδ)n forms a dense subposet
of (Pδ)n for every n < ω, then (Pδ, `δ) has property D.

Proof. By Lemmas 3.11 and 2.11. �

The next lemma will useful in the proof of Lemma 3.14.

Lemma 3.13. Let δ ∈ [2, µ+]. Then, for all n < ω and every directed set

D of conditions in (̊Pδ)n of size < κn, there is q ∈ (P̊δ)n such that q is a
lower bound of D with Bq =

⋃
p∈D Bp.

Proof. We argue by induction on 2 ≤ δ ≤ µ+. The base case δ = 2 can be
proved similarly to the successor case below. So, we assume by induction
that the statement holds for all 2 ≤ γ < δ and prove it for δ.

Fix an arbitrary directed family D ⊆ (P̊δ)n of size < κn.

I Suppose δ = γ+ 1. Then D̄ := {πδ,γ(p) | p ∈ D} is a directed subset of

(P̊γ)n of size < κn, so that the inductive assumption yields a lower bound

p′ ∈ (P̊γ)n for D̄ such that Bp′ :=
⋃
p∈D Bπδ,γ(p). Set D̂ := {tδ,γ(p)(p′) |

p ∈ D}, and note that |D̂| ≤ |D| < κn. By Lemma 3.6, (tδ,γ , πδ,γ) is a
forking projection from (Pδ, `δ) to (Pγ , `γ). So, Definition 2.13(7) together

with Remark 2.24 imply that D̂ is a directed subset of (P̊δ)
πδ,γ
n .

Recalling that (P̊δ)
πδ,γ
n is isomorphic to the κn-directed-closed poset Åπn

given by Building Block II, we pick a lower bound q ∈ (P̊δ)
πδ,γ
n for D̂ such

that πδ,γ(q) = p′. It is clear that q is the desired lower bound.

I Suppose δ is limit. Let C := cl(
⋃
p∈D Bp) ∪ {1, δ}. We shall define a

⊆-increasing sequence 〈pγ | γ ∈ C〉 ∈
∏
γ∈C(P̊γ)n such that, for all γ ∈ C,

pγ is a lower bound for {πδ,γ(p) | p ∈ D} with Bpγ =
⋃
p∈D Bπδ,γ(p). Note

that for each γ ∈ C, Lemma 3.9 yields {πδ,γ(p) | p ∈ D} ⊆ (P̊γ)n. We define
the sequence 〈pγ | γ ∈ C〉 by recursion on γ ∈ C:

• For γ = 1, {πδ,1(p) | p ∈ D} is a directed subset of (P̊1)n of size
< κn. By Building Block I, (P1, `1, c1) is Σ-Prikry, and hence we

may find a lower bound p1 ∈ (P̊1)n for the set under consideration.
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• Suppose γ > 1 is a non-accumulation point of C ∩ δ. Set γ := β + 1
and α := sup(C ∩ γ). Clearly, α ≤ β, so that Lemma 3.5(5) yields

tβ,α(πδ,β(p))(pα) = pα ∗ ∅β,
for each p ∈ D. Set q := pα ∗ ∅β and note that the induction
hypothesis on pα yields Bq =

⋃
p∈D Bπδ,β(p). Set

D̄ := {tγ,β(πδ,γ(p))(q) | p ∈ D}.

Let p ∈ D. Then πδ,γ(p) ∈ (P̊γ)n and by Lemma 3.9, q ∈ (P̊β)n.
Also, by Lemma 3.6, tpγ is a type over (tγ,β, πγ,β), hence Remark

2.24 yields tγ,β(πδ,γ(p))(q) ∈ (P̊γ)n. Altogether, D̄ ⊆ (P̊γ)n.

Since D̄ is a directed subset of (̊Pγ)n of size < κn, arguing as in

the successor case above we find pγ ∈ (P̊γ)n a lower bound for D̄
with πγ,β(pγ) = q. By Lemma 3.5(2), Br = Bπδ,γ(p) ∪ Bq for each

r ∈ D̄. Moreover, since γ ∈ C,

Br = Bπδ,β(p) ∪ {γ} ∪Bq = Bq ∪ {γ},

for each r ∈ D̄.
On one hand, since pγ ≤γ r, Br ⊆ Bpγ and so Bq ∪ {γ} ⊆ Bpγ .

On the other hand, since πγ,β(pγ) = q, Bpγ ⊆ Bq ∪ {γ}. Altogether,
Bpγ = Bq ∪ {γ} and thus Bpγ =

⋃
p∈D Bπδ,γ(p). Also pγ is a lower

bound for {πδ,γ(p) | p ∈ D}. Finally, πγ,α(pγ) = πβ,α(q) = pα, and
so the sequence 〈pγ̄ | γ̄ ≤ γ〉 is ⊆-increasing.
• Suppose γ ∈ acc(C). Define pγ :=

⋃
β∈(C∩γ) pβ. By regularity of

µ, we have |Bpγ | < µ, so that pγ ∈ Pγ . Also, by the induction
hypothesis, Bpγ =

⋃
p∈D Bπδ,γ(p).

For all p ∈ D and all β ∈ C ∩γ, we have πδ,β(pγ) = pβ ≤β πδ,β(p),
hence pγ is a bound for {πδ,γ(p) | p ∈ D} in (Pγ)n.

We claim that pγ ∈ (P̊γ)n: Let α ∈ Bpγ and β ∈ C ∩ γ be

such that α ∈ Bpβ . By the induction hypothesis pβ ∈ (P̊β)n, hence

Lemma 3.9 yields πγ,α(pγ) = πβ,α(pβ) ∈ (P̊α)n. Also, by similar

reasons, πγ,1(pγ) = πβ,1(pβ) ∈ (P̊1)n. Altogether, pγ ∈ (P̊γ)n and
clearly, 〈pγ̄ | γ̄ ≤ γ〉 is ⊆-increasing.
• Suppose γ = δ, but γ 6∈ acc(C). In this case, let γ̄ := sup(C ∩ γ),

and then set pγ := pγ̄ ∗ ∅γ . As the interval (γ̄, γ] is disjoint from⋃
p∈D Bp, for every p ∈ D,

pγ = pγ̄ ∗ ∅γ ≤γ πγ,γ̄(p) ∗ ∅γ = p.

Also, by the induction hypothesis, pγ̄ ∈ (P̊γ̄)n and Bpγ = Bpγ̄ =⋃
p∈D Bp. Finally, Lemma 3.9 yields pγ ∈ (P̊γ)n. Note also that

with this choice 〈pγ̄ | γ̄ ≤ γ〉 is ⊆-increasing.

Clearly, pδ is a lower bound for D in (̊Pδ)n with the desired property. �

We are now ready to address Clause (iv) of Goal 3.2.
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Lemma 3.14. For all nonzero δ ≤ µ+, (Pδ, `δ, cδ) satisfies all the require-
ments to be a Σ-Prikry triple, with the possible exceptions of Clause (7)
and the density requirement in Clause (2). Additionally, ∅δ is the greatest
condition in Pδ, `δ = `1 ◦ πδ,1, and ∅δ 
Pδ µ̌ = κ+.

Under the extra hypothesis that for each δ ∈ acc(µ+ +1) and every n < ω,

(̊Pδ)n is a dense subposet of (Pδ)n, we have that for all nonzero δ ≤ µ+,
(Pδ, `δ, cδ) is Σ-Prikry triple having property D.

Proof. We argue by induction on δ. The base case δ = 1 follows from the
fact that P1 is isomorphic to Q given by Building Block I. The successor
step δ = δ′ + 1 follows from the fact that Pδ′+1 was obtained by invoking
Building Block II.

Next, suppose that δ ∈ acc(µ+ + 1) is such that the conclusion of the
lemma holds below δ. In particular, the hypothesis of Lemma 3.6 are satis-
fied, so that, for all nonzero β ≤ γ ≤ δ, (tγ,β, πγ,β) is a forking projection
from (Pγ , `γ) to (Pβ, `β). We now go over the clauses of Definition 2.3:

(1) The first bullet of Definition 2.1 follows from the fact that `δ = `1◦πδ,1.
Next, let p ∈ Pδ be arbitrary. Denote p̄ := πδ,1(p). Since (P1, `1, c1) is Σ-
Prikry, we may pick p′ ≤1 p̄ with `1(p′) = `1(p̄)+1. As (tδ,1, πδ,1) is a forking
projection from (Pδ, `δ) to (P1, `1), Fact 2.19(2) implies that tδ,1(p)(p′) is
an element of (Pδ)

p
1.

(2) Let n < ω. By Lemma 3.13, the poset (̊Pδ)n is κn-directed closed.

Moreover, under the extra assumption that (̊Pδ)n is a dense subposet of

(Pδ)n we have that (̊Pδ)n witnesses the statement of Clause (2).

The next claim takes care of Clause (3)

Claim 3.14.1. Suppose p, p′ ∈ Pδ with cδ(p) = cδ(p
′). Then, (Pδ)

p
0 ∩ (Pδ)

p′

0
is nonempty.

Proof. If δ < µ+, then since (tδ,1, πδ,1) is a forking projection from (Pδ, `δ, cδ)
to (P1, `1, c1), we get from Clause (8) of Definition 2.13 that c1(p � 1) =
c1(p′ � 1), and then by Clause (3) of Definition 2.3, we may pick r ∈
(P1)p�10 ∩ (P1)p

′�1
0 . In effect, Clause (8) of Definition 2.13 entails tδ,1(p)(r) =

tδ,1(p′)(r). Finally, Fact 2.19(2) implies that tδ,1(p)(r) is in (Pδ)
p
0 and that

tδ,1(p′)(r) is in (Pδ)
p′

0 . In particular, (Pδ)
p
0 ∩ (Pδ)

p′

0 is nonempty.
From now on, assume δ = µ+. In particular, for all nonzero β < γ < µ+,

(Pγ , `γ , cγ) is a Σ-Prikry triple admitting a forking projection to (Pβ, `β, cβ)
as witnessed by (tγ,β, πγ,β). To avoid trivialities, assume also that |{1lµ+ , p, p′}| =
3. For each q ∈ {p, p′}, let Cq := cl(Bq) and define a function eq : Cq → Hµ

via
eq(γ) := (φγ [Cq ∩ γ], cγ(q � γ)).

Write i for the common value of cµ+(p) and cµ+(p′). It follows that, for

every γ ∈ Cp ∩ Cp′ , ep(γ) = ei(γ) = ep′(γ), so that φγ [Cp ∩ γ] = φγ [Cp′ ∩ γ]
and hence Cp∩γ = Cp′∩γ. Consequently, R := Cp∩Cp′ is an initial segment
of Cp and an initial segment of Cp′ .
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Let ζ := max(Cp ∪ Cp′), so that p = (p � ζ) ∗ ∅µ+ and p′ = (p′ � ζ) ∗ ∅µ+ .
Set γ0 := max({0}∪R). By the above analysis, Cp ∩ (γ0, ζ] and Cp′ ∩ (γ0, ζ]
are two disjoint closed sets.

If γ0 = ζ, then ep(ζ) = ep′(ζ), so that cζ(p � ζ) = cζ(p
′ � ζ), and hence

(Pζ)
p�ζ
0 ∩ (Pζ)

p′�ζ
0 is nonempty. Pick r in that intersection. Then r ∗ ∅µ+ is

an element of (Pµ+)p0 ∩ (Pµ+)p
′

0 .
Next, suppose that γ0 < ζ. Consequently, there exists a finite increasing

sequence 〈γj+1 | j ≤ k〉 of ordinals from Cp ∪ Cp′ such that γk+1 = ζ and,
for all j ≤ κ:

(i) if γj+1 ∈ Cp, then (γj , γj+1] ∩ (Cp ∪ Cp′) ⊆ Cp;
(ii) if γj+1 /∈ Cp, then (γj , γj+1] ∩ (Cp ∪ Cp′) ⊆ Cp′ .

We now define a sequence 〈rj | j ≤ k+1〉 in
∏k+1
j=0

(
(Pγj )

p�γj
0 ∩ (Pγj )

p′�γj
0

)
,

as follows.

• For j = 0, if γ0 ∈ Cp∩Cp′ , then ep(γ0) = ep′(γ0), so that cγ0(p�γ0) =

cγ0(p′ � γ0), and we may indeed pick r0 ∈ (Pγ0)p�γ0
0 ∩ (Pγ0)p

′�γ0
0 . If

γ0 /∈ Cp ∩ Cp′ , then γ0 = 0, and we simply let r0 := ∅.
• Suppose that j < k + 1, where rj has already been defined. Let
q := tγj+1,γj (p � γj+1)(rj) and q′ := tγj+1,γj (p

′ � γj+1)(rj). By
Lemma 3.5(2), Bq = (Bp ∩ γj+1)∪Brj and Bq′ = (Bp′ ∩ γj+1)∪Brj .
In particular, if γj+1 ∈ Cp, then (γj , γj+1]∩ (Bq ∪Bq′) ⊆ Bq, so that
q′ = rj ∗ ∅γj+1 and q ≤γj+1 q

′ by Clauses (5) and (6) of Lemma 3.5,
respectively. Likewise, if γj+1 /∈ Cp, then q = rj ∗ ∅γj+1 , so that

q′ ≤γj+1 q. Thus, {q, q′} ∩ (Pγj )
p�γj
0 ∩ (Pγj )

p′�γj
0 is nonempty, and we

may let rj+1 be an element of that set.

Evidently, rk+1 ∗ ∅µ+ is an element of (Pµ+)p0 ∩ (Pµ+)p
′

0 . �

(4) Let p ∈ Pδ, n,m < ω and q ∈ (P pδ )n+m be arbitrary. Recalling that
(tδ,1, πδ,1) is a forking projection from (Pδ, `δ) to (P1, `1), we infer
from Clause (4) of Definition 2.13 that tδ,1(p)(m(p � 1, q � 1)) is the
greatest element of {r ≤nδ p | q ≤mδ r}.

(5) Recalling that (P1, `1, c1) is Σ-Prikry, and that (tδ,1, πδ,1) is a forking
projection from (Pδ, `δ) to (P1, `1), we infer from Fact 2.19(1) that,
for every p ∈ Pδ, |W (p)| = |W (p � 1)| < µ.

(6) Let p′, p ∈ Pδ with p′ ≤δ p. Let q ∈W (p′) be arbitrary. For all γ < δ,
the pair (tδ,γ , πδ,γ) is a forking projection from (Pδ, `δ) to (Pγ , `γ),
so that by the special case m = 0 of Clause (4) of Definition 2.13,

w(p, q) = tδ,γ(p)(w(p � γ, q � γ)).

Now, for all q′ ≤δ q, the induction hypothesis implies that, for all
γ < δ, w(p � γ, q′ � γ) ≤γ w(p � γ, q � γ). Together with Clause (5) of
Definition 2.13, it follows that, for all γ < δ,

w(p, q′) � γ = w(p � γ, q′ � γ) ≤γ w(p � γ, q � γ) = w(p, q) � γ.
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So, by the definition of ≤δ, w(p, q′) ≤δ w(p, q), as desired.
(7) By our assumptions, (tδ,1, πδ,1) is a forking projection from (Pδ, `δ)

to (P1, `1) and (P1, `1, c1) is Σ-Prikry. Moreover, under the extra

assumption that for each n < ω, (̊Pδ)n is a dense subposet of (Pδ)n,
Corollary 3.12 yields property D for (Pδ, `δ). It thus follows from
Lemma 2.21 that (Pδ, `δ) has the CPP.

To complete our proof we shall need the following claim.

Claim 3.14.2. For each δ with 1 ≤ δ ≤ µ+, 1lPδ 
Pδ µ̌ = κ+.

Proof. The case δ = 1 is given by Building Block I. Towards a contradiction,
suppose that 1 < δ ≤ µ+ and that 1lPδ 6
Pδ µ̌ = κ+. As 1lP1 
P1 µ̌ = κ+

and Pδ projects to P1, this means that there exists p ∈ Pδ such that p 
Pδ
|µ| ≤ |κ|. Since P1 is isomorphic to the poset Q of Building Block I, and
since 1lQ 
Q “κ is singular”,20 1lP1 
P1 “κ is singular”. As Pδ projects to P1,
in fact p 
Pδ cf(µ) < κ. Thus, Lemma 2.7(2) yields a condition p′ ≤δ p with
|W (p′)| ≥ µ, contradicting Clause (5) above. �

This completes the proof of Lemma 3.14. �

4. An application

In this section, we present the first application of our iteration scheme. We
will be constructing a model of finite simultaneous reflection at a successor
of a singular strong limit cardinal κ in the presence of ¬SCHκ.

Definition 4.1. For cardinals θ < µ = cf(µ) and stationary subsets S,Γ of
µ, Refl(<θ, S,Γ) stands for the following assertion. For every collection S of
stationary subsets of S, with |S| < θ and sup({cf(α) | α ∈

⋃
S}) < µ, there

exists γ ∈ Γ ∩ Eµ>ω such that, for every S ∈ S, S ∩ γ is stationary in γ.
We write Refl(<θ, S) for Refl(<θ, S, µ).

A proof of the following folklore fact may be found in [PRS20, §4].

Fact 4.2. If κ is a singular strong limit cardinal admitting a stationary
subset S ⊆ κ+ for which Refl(< cf(κ)+, S) holds, then 2κ = κ+.

In particular, if κ is a singular strong limit cardinal of countable cofinality
for which SCHκ fails, and Refl(<θ, κ+) holds, then θ ≤ ω. We shall soon
show that θ := ω is indeed feasible.

The following general statement about simultaneous reflection will be
useful in our verification later on.

Proposition 4.3. Suppose that µ is non-Mahlo cardinal, and θ ≤ cf(µ).
For stationary subsets T,Γ, R of µ, Refl(<2, T,Γ) + Refl(<θ,Γ, R) entails
Refl(<θ, T ∪ Γ, R).

20This is the sole part of the whole proof to make use of the fact that the poset given
by Building Block I forces κ to be singular.
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Proof. Given a collection S of stationary subsets of T ∪ Γ, with |S| < θ
and sup({cf(α) | α ∈

⋃
S}) < µ, we shall first attach to any set S ∈ S, a

stationary subset S′ of Γ, as follows.
I If S ∩ Γ is stationary, then let S′ := S ∩ Γ.
I If S ∩ Γ is nonstationary, then for every (sufficiently thin) club C ⊆ µ,

S ∩ C is a stationary subset of T , and so by Refl(<2, T,Γ), there exists
γ ∈ Γ ∩ Eµ>ω such that (S ∩ C) ∩ γ is stationary in γ, and in particular,
γ ∈ C. So, the set {γ ∈ Γ | S ∩ γ is stationary} is stationary, and, as µ is
non-Mahlo, we may pick S′ which is a stationary subset of it and all of its
points consists of the same cofinality.

Next, as |S| < cf(µ), we have sup({cf(γ) | γ ∈ S′, S ∈ S}) < µ, and so,
from Refl(<θ,Γ, R), we find some δ ∈ R such that S′∩ δ is stationary for all
S ∈ S.

Claim 4.3.1. Let S ∈ S. Then S ∩ δ is stationary in δ.

Proof. If S′ = S, then S ∩ δ = S′ ∩ δ is stationary in δ, and we are done.
Next, assume S′ 6= S, and let c be an arbitrary club in δ. As S′ ∩ δ is
stationary in δ, we may pick γ ∈ acc(c) ∩ S′. As γ ∈ S′ ⊆ Eµ>ω, c ∩ γ is a
club in γ, and as γ ∈ S′, S ∩ γ is stationary, so S ∩ c∩ γ 6= ∅. In particular,
S ∩ c 6= ∅. �

This completes the proof. �

4.1. About Building Block II. In this subsection, we describe Building
Block II that we will be feeding to the iteration scheme of the preceding
section. We were originally planning to use the functor given by [PRS20,
§6], but unfortunately we found a gap in the proof of the mixing property
[PRS20, Lemma 6.16]. To mitigate this gap, we shall relax Clause (4) of
[PRS20, Definition 6.2] and prove that the outcome is a functor satisfy-
ing the weak mixing property (Lemma 4.16 below). Most of the results of
[PRS20, §6] remain valid, as will be detailed later. Therefore, reading of
this subsection does assume that the reader is comfortable with [PRS20,
§6]. The upshot of this subsection is encapsulated by Corollary 4.18.

We commence by describing our setup for this subsection.

Setup 4. Suppose that we are given a Σ-Prikry notion of forcing (P, `, c)
having property D. Denote P = (P,≤) and Σ = 〈κn | n < ω〉. Also, define
κ and µ as in Definition 2.3, and assume that 1lP 
P “κ̌ is singular” and
that µ<µ = µ. Recall that for each n < ω, we denote by P̊n a dense κn-
directed-closed subposet of Pn. Our universe of sets is denoted by V , and we
assume that, for all n < ω, V Pn |= Refl(1, Eµω , E

µ
<κn). Write Γ := {γ < µ |

ω < cfV (γ) < κ}. We also assume that we are given a condition r? forcing

that Ṫ is a P-name for some subset T of (Eµω)V such that, for all γ ∈ Γ,
T ∩ γ is nonstationary in γ.

For each n < ω, denote Ṫn := {(α̌, p) | (α, p) ∈ Eµω × Pn & p 
P α̌ ∈ Ṫ}.
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Lemma 4.4. For every q ≤ r?, q 
P`(q) “Ṫ`(q) is nonstationary”.

Proof. The proof is almost the same as that of [PRS20, Lemma 6.1], so we
settle here for a sketch.

Suppose not, set n := `(r?) and pick p ≤0 r? that Pn-forces Ṫn is sta-
tionary. As V Pn |= Refl(1, Eµω , E

µ
<κn), we may fix p′ ≤0 p and γ ∈ Eµ<κn of

uncountable cofinality such that p′ 
Pn “Ṫn ∩ γ is stationary”. As Pn has
a κn-directed-closed dense subset, γ ∈ Γ, and there exists a ground model
stationary subset B of γ such that

r 
Pn “Ṫn ∩ γ contains the stationary set B̌”.

By definition of the name Ṫn, r 
P B̌ ⊆ Ṫ ∩γ. Finally, as otp(B) < κ, we
infer from Lemma 2.7(1) that B remains stationary in any forcing extension

by P. So, r 
P “Ṫ ∩ γ is stationary”, contradicting the fact that r ≤ p′ ≤
p ≤ r? and γ ∈ Γ. �

Set I := ω \ `(r?). By the preceding lemma, for each n < ω, we may pick

a Pn-name Ċn for a club subset of µ such that, for all q ≤ r? with n := `(q)

in I, q 
Pn Ṫn ∩ Ċn = ∅. Let R be the binary relation

R := {(α, q) ∈ µ× P | q ≤ r? & ∀r ≤ q[`(r) ∈ I → r 
P`(r) α̌ ∈ Ċ`(r)]},

and define Ṫ+ := {(α̌, p) | (α, p) ∈ (Eµω)V × P & p 
P`(p) α̌ /∈ Ċ`(p)}.
It is immediate that for all q ≤ r? with n := `(q) in I, q 
P Ṫ ⊆ Ṫ+.

Note that, for all (α, q) ∈ R, q 
P α̌ /∈ Ṫ+. Also, if (α, q) ∈ R and q′ ≤ q
then (α, q′) ∈ R, as well.

In this section we will aim to kill the stationarity of the bigger set Ṫ+ in
place of T . The whole point for this is that Ṫ+ has the following additional
property: q ≤ r? with n := `(q) in I, q 
Pn Ṫ

+
n = µ̌\Ċn. This will be crucial

in our verification of density of the rings at limit stages (see Lemma 4.24
and, most concretely, the argument on page 52).

Definition 4.5 (relaxed form of [PRS20, Definition 6.2]). Suppose p ∈ P .
A labeled p-tree is a function S : W (p)→ [µ]<µ such that for all q ∈W (p):

(1) S(q) is a closed bounded subset of µ;
(2) S(q′) ⊇ S(q) whenever q′ ≤ q;
(3) q 
P S(q) ∩ Ṫ+ = ∅;
(4) there is a natural number m such that for any pair q′ ≤ q of elements

of W (p), if S(q′) 6= ∅ and `(q) ≥ `(p) +m, then (max(S(q′)), q) ∈ R.
The least such m is denoted by m(S).

Remark 4.6. By Clause (4) and the Definition of R, for any pair q′ ≤ q of
elements of W (p), if `(q) ≥ `(p) +m(S) and q is incompatible with r?, then
S(q′) = ∅.

Definition 4.7 ([PRS20, Definition 6.3]). For p ∈ P , we say that ~S = 〈Si |
i ≤ α〉 is a p-strategy iff all of the following hold:
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(1) α < µ;
(2) Si is a labeled p-tree for all i ≤ α;
(3) for every i < α and q ∈W (p), Si(q) v Si+1(q);
(4) for every i < α and a pair q′ ≤ q in W (p), (Si+1(q) \ Si(q)) v

(Si+1(q′) \ Si(q′));
(5) for every limit i ≤ α and q ∈ W (p), Si(q) is the ordinal closure of⋃

j<i Sj(q). In particular, S0(q) = ∅ for all q ∈W (p).

Now, we are ready to describe our functor.

Definition 4.8 ([PRS20, Definition 6.4]). Let A(P, Ṫ ) be the notion of
forcing A := (A,E), where:

(1) (p, ~S) ∈ A iff p ∈ P , and ~S is either the empty sequence, or a p-
strategy;

(2) (p′, ~S′)E (p, ~S) iff:
(a) p′ ≤ p;
(b) dom(~S′) ≥ dom(~S);

(c) S′i(q) = Si(w(p, q)) for all i ∈ dom(~S) and q ∈W (p′).

For all p ∈ P , denote dpeA := (p, ∅).

Definition 4.9 ([PRS20, Definitions 6.10 and 6.11]).

• Define cA : A→ Hµ by letting, for all (p, ~S) ∈ A,

cA(p, ~S) := (c(p), {(i, c(q), Si(q)) | i ∈ dom(~S), q ∈W (p)}).

• Define π : A→ P by stipulating π(p, ~S) := p and `A := ` ◦ π.

• Given a = (p, ~S) in A, define t(a) : P ↓ p → A by letting for each

p′ ≤ p, t(a)(p′) := (p′, ~S′), where ~S′ is the sequence 〈S′i : W (p′) →
[µ]<µ | i < dom(~S)〉 satisfying:

(*) S′i(q) := Si(w(p, q)) for all i ∈ dom(~S′) and q ∈W (p′).

Even after relaxing Clause (4) of [PRS20, Definition 6.2] to that of Defi-
nition 4.5, the following remains valid, with essentially the same proofs.

Fact 4.10 ([PRS20, Corollary 4.13, Lemma 6.6, Theorem 6.8]).

(1) 1l 
A µ̌ = κ̌+;
(2) For every ν ≥ µ, if P is a subset of Hν , then so is A;

(3) dr?eA 
A “Ṫ+ is nonstationary”.21

Remark 4.11. Note that Fact 4.10(3) together with r? 
P Ṫ ⊆ Ṫ+ (see page 36)

imply that dr?eA 
A “Ṫ is nonstationary”.

Lemma 4.12. (t, π) is a forking projection from (A, `A, cA) to (P, `, c).

21Here, Claim 4.15.1 below plays the role of [PRS20, Lemma 6.7]. Also, note that this

is trivial when Ṫ+ is a P-name for a nonstationary subset of µ in V .
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Proof. The proof of [PRS20, Lemma 6.13] goes through, so we only focus
on Clause (2) of Definition 2.13. Let a ∈ A and p′ ≤ π(a); we shall show
that t(a)(p′) ∈ A and t(a)(p′)E a.

Write a as (p, ~S). If ~S = ∅, then t(a)(p′) = dp′eA, and we are done.

Next, suppose that dom(~S) = α + 1. Let (p′, ~S′) := t(a)(p′). Let i ≤ α
and we shall verify that S′i is a p′-labeled tree with m(S′i) ≤ m(Si). We go
over the clauses of Definition 4.5. To this end, let q′ ≤ q be arbitrary pair
of elements of W (p′).

(2) By Definition 2.3(6), we have w(p, q′) ≤ w(p, q), so that S′i(q
′) =

Si(w(p, q′)) ⊇ Si(w(p, q)) = S′i(q).

(3) As q ≤ w(p, q), w(p, q) 
P Si(w(p, q))∩ Ṫ = ∅, so that, since S′i(q) =

Si(w(p, q)), we clearly have q 
P S
′
i(q) ∩ Ṫ = ∅.

(4) To avoid trivialities, Suppose that S′i(q
′) 6= ∅ and `(q) ≥ m(Si).

Write γ := max(S′i(q
′)). As `(w(p, q)) = `(q) ≥ m(Si) and γ =

max(Si(w(p, q′))), we infer that (γ,w(p, q)) ∈ R. In addition, q ≤
w(p, q), so by the definition of R it follows that (γ, q) ∈ R. Recalling
that max(S′i(q)) = γ, we are done.22

To prove that (p′, ~S′) is a condition in A it now remains to argue that ~S′

fulfills the requirements described in Clauses (3) and (5) of Definition 4.7

but this already follows from the definition of ~S′ and the fact that ~S is a

p-strategy. Finally t(a)(p′) = (p′, ~S′) E (p, ~S) = a by the very choice of p′

and by Definition 4.9. �

We now introduce a type tp over (t, π) witnessing the weak mixing prop-
erty.

Definition 4.13. Define a map tp : A→ <µω, as follows.

Given a = (p, ~S) in A, write ~S as 〈Si | i < β〉, and then let

tp(a) := 〈m(Si) | i < β〉.

We shall soon verify that tp is a type, but will use the mtp notation of
Definition 2.23 from the outset. In particular, we will have Å = (Å,E), with

Å := {a ∈ A | π(a) ∈ P̊`(π(a)) & mtp(a) = 0}. Note that the supercollection
{a ∈ A | mtp(a) = 0} coincides with the set A from [PRS20, Definition 6.4].
In particular, the proof of [PRS20, Lemma 6.15] goes through, yielding the
following fact.

Fact 4.14. For all n < ω, Åπn is µ-directed-closed. �

Lemma 4.15. The map tp is a type over (t, π).

Proof. We go over the clauses of Definition 2.23:

(1) This follows from the mere definition of tp.

22Following the terminology of Definition 4.5(4) note that here we have showed that
m(S′i) ≤ m(Si). This will become important soon, whenever we introduce the type map
associate to Sharon’s functor (see Lemma 4.15).
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(2) Write b = (p′, ~S′) and a = (p, ~S). By Definitions 4.8 and 4.13,

dom(tp(b)) = dom(~S′) ≥ dom(~S) = dom(tp(a)). Fix i ∈ dom(tp(a)) and let
us show that tp(b)(i) ≤ tp(a)(i), i.e., that m(S′i) ≤ m(Si).

Let q′ ≤ q be a pair of elements in W (p′) with S′i(q
′) 6= ∅ and `(q) ≥

`(p′) + m(Si). By Definition 4.8(2c), S′i(q
′) = Si(w(p, q′)), hence it follows

that w(p, q′) ≤ w(p, q) is a pair of elements in W (p) with Si(w(p, q′)) 6= ∅.
Set γ := max(Si(w(p, q′))). By Definition 4.5(4), (γ,w(p, q)) ∈ R hence the
definition of R yields (γ, q) ∈ R. Noting that γ = max(S′i(q

′)) it finally
follows that m(S′i) ≤ m(Si).

(3) This follows from Definition 4.9(*).

(4) Let a ∈ A. If a = dπ(a)eA then a = (π(a), ∅), and so tp(dπ(a)eA)
is the empty sequence. Conversely, if tp(a) is the empty sequence then

Definition 4.13 implies that a takes the form (π(a), ∅), hence a = dπ(a)eA.
(5) Write a as (p, 〈Si | i < dom(tp(a))〉) and let α ∈ µ\dom(tp(a)). There

are two cases to consider:
I If dom(tp(a)) = 0, then let ayα := (p, 〈Ti | i ≤ α〉), where Ti : W (p)→

{∅} is constant for every i ≤ α.
I Otherwise, say dom(tp(a)) = β + 1, let ayα := (p, 〈Ti | i ≤ α〉), where

Ti := Smin{i,β} for every i ≤ α.
It is routine to check that ayα is as desired.
(6) Write b = (p′, ~S′) and a = (p, ~S) and set γ := dom(tp(b)). If γ = 0

then byα E ayα follows simply from p′ ≤ p. Otherwise, γ takes the form

β + 1 and the above clause yields byα = (p′, ~T ′), where ~T ′ := 〈T ′i | i ≤ α〉
and T ′i := S′min{i,β}. Similarly, ayα = (p, ~T ), where ~T := 〈Ti | i ≤ α〉 and

Ti := Smin{i,β}. Using that bEa, Definition 4.8 yields byαEayα, as wanted.

(7) Let a = (p, ~S) ∈ A. To avoid trivialities, let us assume that ~S 6= ∅.
I Suppose p is incompatible with r?. Then, by Remark 4.6, for all

i < dom(tp(a)) and all q ∈ W (p), Si(q) = ∅. Therefore, mtp(a) = 0.

Using Definition 2.3(2) find p′ ≤0 p ∈ P̊ and set b := t(a)(p′). Combining
Clauses (2) and (3) above with the fact that mtp(a) = 0 it easily follows

that mtp(b) = 0. Also, π(b) = p′ ∈ P̊`(p). Thus, b ∈ Å`(p) ↓ a, as wanted.

I Suppose p ≤ r?. The following claim will give us the desired condition.

Claim 4.15.1. Let ε < µ. There exist α > ε and q ≤0 π(a) such that

(α, q) ∈ R. Furthermore, there exist α > ε and b = (q, ~T ) E0 a such that

b ∈ Å, dom(~T ) = α+ 1, and for all r ∈W (q), max(Tα(r)) = α.

Proof. Since (P, `, c) is Σ-Prikry, we infer from Definition 2.3(5) that |W (p)| <
µ. Thus, by possibly extending ε, we may assume that Si(q) ⊆ ε, for all
q ∈ W (p) and i ∈ dom(tp(a)). By Clause (5), we may also assume that
dom(tp(a)) is a successor ordinal, say, it is β + 1.

As p ≤ r?, by the very same proof of [PRS20, Claim 5.6.2(1)] and using
Clause (2) of Definition 2.3, we may fix (α, q) ∈ R with α > β + ε, q ≤0 p

and q ∈ P̊`(p). Define ~T = 〈Ti : W (q) → [µ]<µ | i ≤ α〉 by letting for all
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r ∈W (q) and i ∈ dom(~T ):

Ti(r) :=

{
Si(w(p, r)), if i ≤ β;

Sβ(w(p, r)) ∪ {α}, otherwise.

It is easy to see that Ti is a labeled q-tree for each i ≤ α. By Definitions

4.7, 4.8 and 4.9, we also have that b = (q, ~T ) is a condition in A with bE0 a

and π(b) = q ∈ P̊`(p). As (α, q) ∈ R, then (α, r) ∈ R for all r ∈W (q), hence

mtp(b) = 0. Therefore, b is a condition in Å with the desired properties. �

This completes the proof. �

Lemma 4.16 (Weak Mixing Property). For all a ∈ A, n < ω, ~r, and
p′ ≤0 π(a), and for every function g : Wn(π(a)) → A ↓ a, if there exists an
ordinal ι such that all of the following hold:

(1) ~r = 〈rξ | ξ < χ〉 is a good enumeration of Wn(π(a));
(2) 〈π(g(rξ)) | ξ < χ〉 is diagonalizable with respect to ~r, as witnessed by

p′;
(3) for every ξ < χ:

• if ξ < ι, then dom(tp(g(rξ)) = 0;
• if ξ = ι, then dom(tp(g(rξ)) ≥ 1;
• if ξ > ι, then dom(tp(g(rξ)) > (supη<ξ dom(tp(g(rη))) + 1;

(4) for all ξ ∈ (ι, χ) and i ∈ [dom(tp(a)), supη<ξ dom(tp(g(rη)))],

tp(g(rξ))(i) ≤ mtp(a),

(5) supι≤ξ<χ mtp(g(rξ)) < ω,

then there exists bE0a with π(b) = p′ and mtp(b) ≤ n+supι≤ξ<χ mtp(g(rξ)),
such that for all q′ ∈Wn(p′),

t(b)(q′)E0 g(w(π(a), q′)).

Proof. Let a := (p, ~S). For each ξ < χ, set (pξ, ~S
ξ) := g(rξ).

Claim 4.16.1. If ι ≥ χ then there is b ∈ A as in the lemma.

Proof. If ι ≥ χ then Clause (3) yields dom(tp(g(rξ)) = 0 for all ξ < χ.

Hence, Clause (4) of Definition 2.23 yields g(rξ) = dpξeA for all ξ < χ. In

particular also a = dpeA. Set b := dp′eA, where p′ is given by Clause (2).
Clearly, π(b) = p′ and b E0 a. Let q′ ∈ Wn(p′). By Clause (2) above,

q′ ≤0 pξ, where ξ is such that rξ = w(p, q′). Finally, Definition 2.13(6)

yields t(b)(q′) = dq′eA E0 dpξeA = g(rξ), as desired. �

Hereafter let us assume that ι < χ. For each ξ ∈ [ι, χ), Clause (3) and

Definition 4.13 together imply that dom(~Sξ) = αξ + 1 for some αξ < µ.
Moreover, Clause (3) yields supι≤η<ξ αη < αξ for all ξ ∈ (ι, χ). Likewise,

the same clause implies that g(rξ) = dpξeA, hence ~Sξ = ∅, for all ξ < ι.
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Let 〈sτ | τ < θ〉 be a good enumeration Wn(p′). By Fact 2.19, θ < µ. For
each τ < θ, set rξτ := w(p, sτ ). By Clause (1) above, for each τ < θ,

sτ ≤0 π(g(w(p, sτ ))) = π(g(rξτ )) = pξτ .

Set α′ := supι≤ξ<χ αξ and α := sup(dom(~S)).23 By regularity of µ and
Clause (3) above it follows that α < α′ < µ. Our goal is to define a sequence
~T = 〈Ti : W (p′) → [µ]<µ | i ≤ α′〉 for which b := (p′, ~T ) is a condition
satisfying the conclusion of the lemma.

As 〈sτ | τ < θ〉 is a good enumeration of the nth-level of the p′-tree W (p′),
Fact 2.6 entails that, for each q ∈ W (p′), there is a unique ordinal τq < θ,
such that q is comparable with sτq . It thus follows from Fact 2.6(3) that,
for all q ∈ W (p′), `(q) − `(p′) ≥ n iff q ∈ W (sτq). Moreover, for each

q ∈W≥n(p′), q ≤ sτq ≤0 pξτq , hence w(p
ξτq
, q) is well-defined.

Now, for all i ≤ α′ and q ∈W (p′), let:

Ti(q) :=


S
ξτq
min{i,αξτq }

(w(pξτq , q)), if q ∈W (sτq) & ι ≤ ξτq ;

Smin{i,α}(w(p, q)), if q /∈W (sτq) & α > 0;

∅, otherwise.

Claim 4.16.2. Let i ≤ α′. Then Ti is a labeled p′-tree.

Proof. Fix q ∈ W (p′) and let us go over the Clauses of Definition 4.5. The
verification of (1), (2) and (3) are similar to that of [PRS20, Claim 6.16.1],
so we just provide details for the new Clause (4).

For each i < α′, set

ξ(i) := min{ξ ∈ [ι, χ) | i ≤ αξ}.
Subclaim 4.16.2.1. If i < α′, then

m(Ti) ≤ n+ max{mtp(a), supι≤η<ξ(i) mtp(g(rη)), tp(g(rξ(i))(i)}.

Proof. Let q′ ≤ q be in W (p′) with q ∈Wk(p
′), where

k ≥ n+ max{mtp(a), supι≤η<ξ(i) mtp(g(rη)), tp(g(rξ(i))(i)}.
Suppose that Ti(q

′) 6= ∅. Denote τ := τq′ and δ := max(Ti(q
′)). Since `(q) ≥

`(p′) + n, note that q, q′ ∈ W (sτ ). Also, ι ≤ ξτ , as otherwise Ti(q
′) = ∅.

Therefore, we fall into the first option of the casuistic getting

Ti(q
′) = Sξτmin{i,αξτ }

(w(pξτ , q
′)).

I Assume that ξτ < ξ(i). Then, αξτ < i and so

Ti(q
′) = Sξταξτ (w(pξτ , q

′)).

We have that w(pξτ , q
′) ≤ w(pξτ , q) is a pair in Wk−n(pξτ ) and that the set

Sξταξτ (w(pξτ , q
′)) is non-empty. Also, k−n ≥ mtp(g(rξτ )) = m(Sξταξτ ). So, by

Clause (4) for Sξταξτ , we have that (δ, w(pξτ , q)) ∈ R, and thus (δ, q) ∈ R.

23Note that a might be dpeA, so we are allowing α = 0.
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I Assume that ξ(i) ≤ ξτ . Then i ≤ αξ(i) ≤ αξτ , and thus

Ti(q
′) = Sξτi (w(pξτ , q

′)).

If dom(tp(a)) ≤ i ≤ supι≤η<ξ(i) αη, by Clause (4) above,

tp(g(rξτ ))(i) ≤ mtp(a).

Otherwise, if supι≤η<ξ(i) αη < i ≤ αξ(i), again by Clause (4) above

tp(g(rξτ ))(i) ≤ max{mtp(a), tp(g(rξ(i))(i)}.

In either case, w(pξτ , q) ∈ Wk−n(pξτ ) and k − n ≥ tp(g(rξτ ))(i) = m(Sξτi ).

So by Clause (4) of Sξτi we get that (δ, w(pξτ , q)) ∈ R, hence (δ, q) ∈ R. �

Subclaim 4.16.2.2. m(Tα′) ≤ n+ supι≤ξ<χ mtp(g(rξ)).

Proof. Let q′ ≤ q be inW (p′) with q ∈Wk(p
′) and k ≥ n+supι≤ξ<χ mtp(g(rξ)),

and suppose that Tα′(q
′) 6= ∅. Denote τ := τq′ and δ := max(Tα′(q

′)).
Since k ≥ n, q, q′ ∈W (sτ ). Also, ι ≤ ξτ , as otherwise Tα′(q

′) = ∅. Hence,

Tα′(q
′) = Sξταξτ (w(pξτ , q

′)). Then w(pξτ , q
′) ≤ w(pξτ , q) is a pair in Wk−n(pξτ )

with k−n ≥ mtp(g(rξτ )) = m(Sξταξτ ). So, by Definition 4.5(4) regarded with

respect to Sξταξτ , it follows that (δ, w(pξτ , q)) ∈ R. Thus, (δ, q) ∈ R, as
wanted. �

The combination of the above subclaims yield Clause (4) for Ti. �

Claim 4.16.3. The sequence ~T = 〈Ti : W (p′) → [µ]<µ | i ≤ α′〉 is a
p′-strategy.

Proof. We need to go over the clauses of Definition 4.7. However, Clause (1)
is trivial, Clause (2) is established in the preceding claim, and Clauses (3)

and (5) follow from the corresponding features of ~S and the ~Sr
τ
’s. Finally,

Clause (4) can be proved similarly to [PRS20, Claim 6.16.2], noting that if
α > 0 then ι = 0. �

Thus, we have established that b := (p′, ~T ) is a legitimate condition in A,
such that mtp(b) ≤ n+ supξ<χ mtp(g(rξ)).

The next series of claims take care of the rest of the lemma:

Claim 4.16.4. Let τ < θ. For each q ∈Wn(sτ ), w(p′, q) = w(sτ , q) = q.

Proof. The first equality can be proved exactly as in [PRS20, Claim 6.16.4].
For the second, notice that q and w(sτ , q) are conditions in W (sτ ) with the
same length. Hence, Fact 2.6(2) yields q = w(sτ , q), as wanted. �

Claim 4.16.5. π(b) = p′ and bE0 a.

Proof. The proof of this can be found in [PRS20, Claim 6.16.3]. �

Claim 4.16.6. For each τ < θ, t(b)(sτ )E0 g(rξτ ).24

24Recall that 〈sτ | τ < θ〉 was a good enumeration of Wn(p′).
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Proof. Let τ < θ and ~T τ be denote the sτ -strategy such that t(b)(sτ ) =

(sτ , ~Tτ ). By Corollary 4.12 we have that π(t(b)(sτ )) = sτ ≤0 pξτ .

If ξτ < ι, then t(b)(sτ )E0 dpξτ e
A = g(rξτ ), and we are done.

So, let us assume that ι ≤ ξτ . Let i ≤ αξτ and q ∈ W (sτ ). By Def-
inition 4.9(*), T τi (q) = Ti(w(p′, q)) and by one of the preceding claims,
w(p′, q) = w(sτ , q) = q, hence T τi (q) = Ti(q). Also rξτq = w(p, sτq) =

w(p, sτ ) = rξτ , where the second last equality follows from q ∈ W (sτ ).
Therefore,

T τi (q) = Sξτmin{i,αξτ }
(w(pξτ , q)) = Sξτi (w(pξτ , q)).

Altogether, t(b)(sτ )E0 g(rξτ ), as wanted. �

The above claims yield the proof of the lemma. �

Combining Lemmas 4.12 and 4.16 we arrive at:

Corollary 4.17. (t, π) is a forking projection from (A, `A, cA) to (P, `, c)
having the weak mixing property. �

Now we take advantage of the preceding corollary to establish that (A, `A, cA)
is Σ-Prikry and that (A, `A) has property D. On this respect, note that the
latter statement follows combining Corollary 4.17, Lemma 2.27 and property
D of (P, `) (Setup 4). For the former let us go over the clauses of Defini-
tion 2.3: Clauses (1),(3),(4),(5) and (6) follow from lemmas 4.5, 4.7, 4.8 and
4.9 of [PRS20], respectively. Clause (7) follows combining property D of
(P, `) with Corollary 4.17 and Corollary 2.28. Also, by [PRS20, Corollary
4.13], 1lA 
A µ̌ = κ̌+. Finally, note that Clause (2) follows from Lemma 2.29
together with Corollary 4.17 and Fact 4.14.

Altogether, we arrive at the main result of this section:

Corollary 4.18. Suppose:

(i) (P, `, c) is a Σ-Prikry notion of forcing such that the pair (P, `) has
property D;

(ii) 1lP 
P µ̌ = κ+;
(iii) P = (P,≤) is a subset of Hµ+;

(iv) r? ∈ P forces that Ṫ is a P-name for some subset T of (Eµω)V such
that, for all γ < µ with ω < cfV (γ) < κ, T ∩ γ is nonstationary in
γ.

Then, there exists a Σ-Prikry triple (A, `A, cA) such that (A, `A) has prop-
erty D and for which the following are true:

(1) (A, `A, cA) admits a forking projection (t, π) to (P, `, c) that has the
weak mixing property;

(2) for each n < ω, Åπn is µ-directed-closed;
(3) 1lA 
A µ̌ = κ+;
(4) A = (A,E) is a subset of Hµ+;

(5) dr?eA forces that Ṫ is nonstationary.
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Proof. Item (1) and the assertion that (A, `A, cA) is Σ-Prikry and that (A, `A)
has property D follow from our previous arguments. Item (2) follows from
Fact 4.14 and items (3),(4) and (5) already appeared in Fact 4.10.25 �

4.2. Connecting the dots. For the rest of this section, we make the fol-
lowing assumptions:

• Σ = 〈κn | n < ω〉 is an increasing sequence of Laver-indestructible
supercompact cardinals;
• κ := supn<ω κn, µ := κ+ and λ := κ++;
• 2κ = κ+ and 2µ = µ+;
• Γ := {γ < µ | ω < cfV (γ) < κ}.

Under these assumptions, [PRS20, Corollary 5.11] reads as follows:

Fact 4.19. If (P, `, c) is a Σ-Prikry notion of forcing such that 1lP 
P µ̌ =
κ+, then V P |= Refl(<ω,Γ).

We now want to appeal to the iteration scheme of the previous section.
For this, we need to introduce our three building blocks of choice.

Building Block I. Let Q be the Extender Based Prikry Forcing (EBPF)
for blowing up 2κ to κ++. By results in [Pov20, Ch.10, §2.5], this notion
of forcing can be regarded as a Σ-Prikry triple (Q, `, c) for which (Q, `) has
property D, Q is a subset of Hµ+ , and 1lQ 
Q µ̌ = κ+. Furthermore, for

each n < ω, Qn is κn-directed-closed, so we set Q̊n := Qn. Finally, as κ is
singular, 1lQ 
Q “κ is singular”.

Building Block II. For every Σ-Prikry triple (P, `P, cP) having property D
such that P = (P,≤) is a subset of Hµ+ and 1lP 
P µ̌ = κ+, every r? ∈ P , and
every P-name z ∈ Hµ+ , we obtain a corresponding Σ-Prikry triple (A, `A, cA)
as follows:

I If r? ∈ P forces that z is a P-name for a stationary subset of (Eµω)V

that does not reflect in Γ, then we first let σ be a P-nice name for a
subset of (Eµω)V such that 1lP 
P σ = z. Setting Ṫ := {(α̌, p) ∈ σ |
p is compatible with r?}, we then get that r? 
P Ṫ = z. Further-

more, 1lP forces that Ṫ is a P-name for some subset T of (Eµω)V such
that, for all γ ∈ Γ, T ∩ γ is nonstationary in γ. We then obtain
(A, `A, cA) by appealing to Corollary 4.18 with the Σ-Prikry triple

(P, `P, cP), the condition 1lP and the name Ṫ . In effect, d1lPeA forces

that Ṫ is nonstationary, so that dr?eA forces that z is nonstationary.
I Otherwise, we invoke Corollary 4.18 with the Σ-Prikry triple (P, `P, cP),

the condition 1lP and the name Ṫ := ∅.
In either case, we get:

(a) (A, `A, cA) admits a forking projection (t, π) to (P, `P, cP) that has
the weak mixing property;

25See also Remark 4.11.
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(b) for each n < ω, Åπn is κn-directed-closed;26

(c) 1lA 
A µ̌ = κ+;
(d) A = (A,E) is a subset of Hµ+ ;

(e) if r? forces that z is a P-name for a stationary subset of (Eµω)V that

does not reflect in Γ, then dr?eA forces that z is nonstationary.

Building Block III. As 2µ = µ+, we fix a surjection ψ : µ+ → Hµ+ such

that the preimage of any singleton is cofinal in µ+.

We would like now to appeal to the iteration scheme of Section 3 with
these building blocks. However, Lemma 3.14 partially bears on the extra
assumption that for all δ ∈ acc(µ+ + 1) and n < ω, (̊Pδ)n is dense in (Pδ)n.
Our next task will be checking that the iteration defined using the previous
building blocks has this feature. Once we are done we will prove Theorem
4.25, which yields the very first application of our iteration scheme.

Definition 4.20. For every nonzero β < µ, as (Pβ+1, `β+1, cβ+1) is obtained
from (Pβ, `β, cβ) by invoking the above-mentioned Building Block II, we shall

denote by 〈Ċβn | n < ω〉, and Rβ the corresponding objects appearing before
Definition 4.5 and involved in defining Pβ+1. In particular, Rβ ⊆ µ×Pβ. We

shall denote by (Ṫ+)β the Pβ-name defined as in page 36. More explicitly,

(Ṫ+)β := {(α̌, p) | (α, p) ∈ (Eµω)V
Pβ × Pβ & (p 
(Pβ)`(p) α̌ ∈ Ċ

β
`(p))}.

Remark 4.21. Recall that the Pβ-name (Ṫ+)β have the following additional

property: for all q ∈ Pβ, setting n := `(q), q 
Pn (Ṫ+)βn = µ̌ \ Ċβn . This will
be crucially used in the argument towards verifying Clause (4) for Sα. More

precisely, when we show on page 52 that (εω, dpePβ0 ) ∈ R.

Definition 4.22. Let δ ∈ [2, µ+] and a ∈ Pδ.
• For every nonzero β < δ, if β+ 1 ∈ Ba, then (a �β+ 1) = (a �β)a〈~S〉

for some nonempty sequence ~S, so we denote this sequence by ~Sa,β =

〈Sa,βi | i ≤ αa,β〉;
• For every nonzero β < δ such that β+1 ∈ Ba, and every q ∈W (a�β),

we let σa,β(q) := max({0} ∪ Sa,β
αa,β

(q));

• Let σa := sup{σa,β(q) | β + 1 ∈ Ba \ 2 & q ∈W (a � β)}.

Lemma 4.23. Let δ ∈ [2, µ+], a ∈ Pδ and β + 1 ∈ Ba \ 2.

(1) σa,β : W (a � β) → µ is order-reversing; In particular, for all q ∈
W (a � β), σa,β(a � β) ≤ σa,β(q) ≤ σa;

(2) For all r ≤β a � β and s ∈W (r), letting b := tβ+1,β(a � (β + 1))(r),

σb,β(s) = σa,β(w(a � β, s));

26Recall Footnote 9 on page 15.
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(3) For all b ≤β+1 a � (β + 1) and q ∈W (b � β),

σb,β(q) ≥ σa,β(w(a � β, q)).

Proof. (1) By Definition 4.5(2).
(2) By Definition 4.9(*).
(3) By Definition 4.7(3) and Definition 4.9. �

Lemma 4.24. For all δ ∈ [2, µ+], n < ω, and ε < µ,

Dε
δ,n := {b ∈ (P̊δ)n | ∀β + 1 ∈ Bb \ 2 [ε < σb,β(b � β)]}

is dense in (Pδ)n.

In particular, for all δ ∈ [2, µ+] and n < ω, (̊Pδ)n is dense in (Pδ)n.

Proof. By induction on δ. Suppose that we are given δ ∈ [2, µ+] such that
for all γ ∈ [2, δ), n < ω and ε < µ, Dε

γ,n is dense in (Pγ)n.

Case 1: Suppose that δ = β + 1 is a successor ordinal. Let a ∈ Pδ and
ε < µ be arbitrary. Denote n := `δ(a). Appealing to Claim 4.15.1, find
a′ ≤0

β (a � β) and α > max{ε, σa} with (α, a′) ∈ Rβ.

If β = 1, then set b′ := a′; otherwise, appeal to the inductive hypothesis
to pick b′ ∈ Dε

β,n extending a′. In either case, (α, b′) ∈ Rβ.

If β + 1 /∈ Ba, then we are done by setting b := b′ ∗ ∅δ, so suppose that

β + 1 ∈ Ba. In particular, a = (a � β)a〈〈Sa,βi | i ≤ αa,β〉〉. Now, let

b := b′a〈〈Si | i ≤ αa,β + 1〉〉, where for each q ∈ W (b′), Si(q) is defined as
follows:

Si(q) :=

{
Sa,βi (w(a � β, q)), if i ≤ αa,β;

Sa,βi (w(a � β, q)) ∪ {α}, otherwise.

As (α, b � β) = (α, b′) ∈ Rβ, we infer that b ∈ Pδ and mtpβ+1(b) = 0.

Thus, since b′ ∈ P̊β, it follows that b ∈ P̊δ. Finally, since Bb = Bb′ ∪{β+ 1},
our choice of b′ implies that b is an element of Dε

δ,n extending a.

Case 2: Suppose that cf(δ) > κ. Let a ∈ Pδ and ε < µ be arbitrary.
Denote n := `δ(a). Then Ba is bounded in δ. Fix γ < δ such that a =
(a � γ) ∗ ∅δ. By the inductive hypothesis, we find a′ ∈ Dε

γ,n extending a � γ.
Set b := a′ ∗ ∅δ, so that Bb = Ba′ . Then b ∈ Dε

δ,n extends a, as desired.

Case 3: Suppose that 1 < cf(δ) ≤ κ. As κ is the limit of the strictly
increasing sequence 〈κn | n < ω〉 (recall the opening of Subsection 4.2), we
may let m < ω be the least such that cf(δ) < κm.

Claim 4.24.1. For all n ≥ m and ε < µ, Dε
δ,n is dense in (Pδ)n.

Proof. Let ε < µ and let a ∈ Pδ be such that n := `δ(a) is ≥ m. By the proof
of Case 2, we may assume that Ba is unbounded in δ. Let 〈γτ | τ < cf(δ)〉
be the increasing enumeration of a small cofinal subset of Ba \ 2, and set
γcf(δ) := δ. We now construct a sequence of conditions 〈bτ | τ ≤ cf(δ)〉 ∈∏
τ≤cf(δ)D

ε
γτ ,n in such a way that, for all η < τ ≤ cf(δ), bη ≤0

γη a �γη, bτ �γη.
The construction is by recursion on τ ≤ cf(δ), as follows:
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I For τ = 0, use the induction hypothesis to find b0 ≤0
γ0
a � γ0 in Dε

γ0,n.
I For every τ < cf(δ) such that bτ has already been defined, use the

induction hypothesis to find bτ+1 ≤0
γτ+1
tγτ+1,γτ (a � γτ+1)(bτ ) in Dε

γτ+1,n.

I For every τ ∈ acc(cf(δ) + 1) such that 〈bη | η < τ〉 has already been
defined, we get from the induction hypothesis together with Clause (4) of

Definition 2.23 that 〈bη ∗∅γτ | η < τ〉 is a ≤0
γτ -decreasing sequence in (̊Pγτ )n.

Thus, by Lemma 3.13, we may find a lower bound bτ in (̊Pγτ )n such that
Bbτ =

⋃
η<τ Bbη . In effect, bτ ∈ Dε

γτ ,n.
At the end of the above process, we have obtained bcf(δ) which is an

element of Dε
δ,n extending a, as desired. �

For each n < ω, let us say that †δ,n holds iff, for all ε < µ, Dε
δ,n is dense

in (Pδ)n. By Claim 4.24.1, †δ,n holds for all n ≥ m. In particular, if m = 0,
then we are done. To address the general case, we now assume that we are
given n < ω such that †δ,n+1 holds, and we shall prove that †δ,n holds, as
well.

Let ε < µ, and let a ∈ Pδ with `δ(a) = n; we need to find a condition
b ∈ Dε

δ,n extending a. To this end, we shall first construct a ≤0
δ-decreasing

sequence 〈aj | j < ω〉 and an increasing sequence of ordinals 〈εj | j < ω〉
such that, for each j < ω and β + 1 ∈ Baj \ 2, all of the following will hold:

(I) For all q ∈W1(aj+1 � β), σaj ≤ εj < σaj+1,β(q);

(II) For all q ∈W≥1(aj+1), q � β 
(Pβ)`δ(q)
Ċβ`δ(q) ∩ (ε̌j , ε̌j+1) 6= ∅.

The construction of 〈(aj , εj) | j < ω〉 is by recursion on j < ω. We
start by setting (a0, ε0) := (a,max{σa, ε}). Next, suppose that j < ω and
that the pair (aj , εj) has already been defined. Since †δ,n+1 holds, D

εj
δ,n+1

is a set of conditions in (̊Pδ)n+1 which is dense in (Pδ)n+1. Let ~s = 〈sξ |
ξ < χ〉 be a good enumeration of W1(aj). By Lemma 3.11, we may now

use the winning strategy of I in playing the game aPδ(aj , ~s,D
εj
δ,n+1), thus

obtaining a sequence 〈bξ | ξ < χ〉 of conditions in D
εj
δ,n+1 along with a

condition aj+1 ≤0
δ aj such that aj+1 diagonalizes 〈bξ | ξ < χ〉 with respect

to ~s. Finally, set εj+1 := supξ<χ σ
bξ .

The reason we diagonalize conditions in D
εj
δ,n+1 will become apparent in

the verification of Clauses (I) and (II):

Claim 4.24.2. For each β with β+ 1 ∈ Baj \ 2 and every q ∈W1(aj+1 �β),

σaj ≤ εj < σaj+1,β(q).

Proof. Suppose that β and q are as above. Defining c := tδ,β(aj+1)(q) we
have that c ∈ W1(aj+1), and so there is ξ < χ such that c ≤0

δ bξ. Since
bξ ≤δ aj , β+ 1 ∈ Baj ⊆ Bbξ . Also, (c �β+ 1) ≤0

β+1 (bξ �β+ 1) and c �β = q,

so w(bξ � β, c � β) = w(bξ � β, q) = bξ � β. Thus, Clauses (2) and (3) of
Lemma 4.23 together yield

εj < σbξ,β(bξ � β) ≤ σc,β(q) = σaj+1,β(w(aj+1 � β, q)) = σaj+1,β(q),
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where the rightmost equality follows from q ∈W (aj+1 � β).

Finally, since b0 ≤δ aj , Lemma 4.23(3) yields σaj ≤ σb0 ≤ εj . �

Claim 4.24.3. For each β with β + 1 ∈ Baj \ 2 and every q ∈W≥1(aj+1),

q � β 
(Pβ)`δ(q)
Ċβ`δ(q) ∩ (ε̌j , ε̌j+1) 6= ∅.

Proof. Suppose that β and q are as above. Appealing to Fact 2.6, let q̃ be
the unique member of W1(aj+1) such that q ≤δ q̃.

Since aj+1 diagonalizes 〈bξ | ξ < χ〉, there is ξ < χ such that q̃ ≤0
δ bξ.

Note that β + 1 ∈ Bbξ \ 2, as bξ ≤δ aj . Also, since bξ ∈ D
εj
δ,n+1 ⊆ P̊δ,

Lemma 3.9 yields (bξ � β + 1) ∈ P̊β+1. In particular, mtpβ+1(bξ � β + 1) = 0.
Equivalently,

(σbξ,β(q), bξ � β) ∈ Rβ for all q ∈W (bξ � β).27

Since q � β ≤β q̃ � β ≤0
β bξ � β, (σbξ,β(bξ � β), q � β) ∈ Rβ. Therefore,

q � β 
(Pβ)`δ(q)
σbξ,β(bξ � β) ∈ Ċβ`δ(q).

Finally, as εj < σbξ,β(bξ � β) ≤ supξ<χ σ
bξ < εj+1, the claim follows. �

This produces a sequence 〈(aj , εj) | j < ω〉 witnessing Clauses (I) and
(II), with (a0, ε0) = (a, ε). Set εω := supj<ω εj .

Claim 4.24.4. There is b ∈ P̊δ such that b ≤0
δ aj for all j < ω.

In particular, there is b ∈ Dε
δ,n such that b ≤0

δ a.

Proof. Let 〈γτ | τ < θ〉 be the increasing enumeration of
⋃
j<ω Baj \ 2.

The sought condition b will be obtained as the union of a sequence of
conditions 〈bτ | τ < θ〉 for which the following hold:

(a) bτ ∈ (P̊γτ ) and Bbτ \ 2 = {γ% | % ≤ τ};
(b) σbτ ,β(bτ � β) = εω for all β + 1 ∈ Bbτ ;
(c) bτ ≤0

γτ aj � γτ for all j < ω;
(d) bτ � γ% = b% for all % ≤ τ .

For each τ < θ, we shall denote by βτ the predecessor of γτ .

Case τ = 0: Since 〈aj �1 | n < ω〉 is a decreasing sequence of conditions in

(P1)n = (̊P1)n, Definition 2.3(2) yields a ≤0
1-lower bound p ∈ (P1)n for it.28

For each j < ω, set

cj := tγ0,β0(aj � γ0)(dpePβ0 ).

Since dpePβ0 ≤0
β0
daj � 1ePβ0 it follows that cj ≤0

γ0
aj � γ0 for each j < ω.

Actually, by Clauses (3) and (6) of Lemma 3.5, the sequence 〈cj | j < ω〉
is ≤πγ0,β0

γ0 -decreasing hence, as in the proof of [PRS20, Lemma 6.15], it is
order-isomorphic to (ω,3).

27See Definition 4.5(4) and Definition 4.13.
28The equality (P1)n = (̊P1)n was part of Building Block I.
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Let j0 < ω denote the least index such that γ0 ∈ Baj for each j ≥ j0. For

each j ≥ j0, put ~Rj := ~Scj ,β0 so that cj = dpePβ0 a〈~Rj〉. By Definition 4.9(*),

max(dom(~Rj)) = max(dom(~Saj ,β0)) = αaj ,β0 ,

and

(?) Rji (q) = S
aj ,β0

i (w(aj � β0, q)) for all i ≤ αaj ,β0 and q ∈W (dpePβ0 ).

Set α := supj0≤j<ω αj , where αj := αaj ,β0 for each j ≥ j0. Let b0 :=

dpePβ0 a〈~S〉, where ~S is the sequence 〈Si | i ≤ α + 1〉 defined according to
the following casuistic:

I For i < α, Si(q) is defined as the unique member of

{Rji (q) | j ≥ j0, αj ≥ i}.

I For i = α, we distinguish several cases:

II If α = αj , for some j ≥ j0, then Sα(q) := Rjαj (q);
II If Si(q) = ∅ for all i < α, then we continue and let Sα(q) := ∅;
II Otherwise, set Sα(q) :=

⋃
i<α Si(q) ∪ {εq}, where

εq := sup{max(Si(q)) | i < α, Si(q) 6= ∅}.

I For i = α+ 1, let Sα+1(q) := Sα(q) ∪ {εω}.
A moment’s reflection makes it clear that

εq = sup{max(Rjαj (q)) | j ≥ j0, R
j
αj (q) 6= ∅}.

Subclaim 4.24.4.1. b0 witnesses Clauses (a)–(d).

Proof. Note that Clause (d) is trivially true at this stage. Assume for a
moment that Clause (a) holds. By assumption, b0 is a condition in Pγ0 and
by construction b0 ≤0

γ0
cj ≤0

γ0
aj � γ0 for all j < ω. Thus, Clause (c) holds.

For Clause (b), note that Bb0 \ 2 = {γ0} and

σb0,β0(b0 � β0) = σb0,β0(dpePβ0 ) = εω.

Thus we are left with verifying the first assertion of Clause (a).

Let us first prove that b0 ∈ Pγ0 , which amounts to check that ~S is a

dpePβ0 -strategy. Since for each j < ω, ~Rj is a dpePβ0 -strategy a moment of
reflection makes clear that we just need to verify that both Sα and Sα+1

are labeled dpePβ0 -trees. Actually, since 〈Si(q) | i < α〉 is a weakly v-
increasing sequence of closed sets it is enough to check Clauses (3) and (4)
of Definition 4.5. We commence checking this for Sα. The proof for Sα+1

will be straightforward once we are done with that for Sα.

Clause (3) for Sα: Fix q ∈W (dpePβ0 ) and to avoid trivialities assume that

Sα(q) 6= ∅. For each j ≥ j0, Clause (3) for ~Rj yields

q 
Pγ0
Rjαj (q) ∩ (Ṫ+)

β0
= ∅,
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hence it is enough with discussing the case where Sα(q) = (
⋃
i<α Si(q))∪{εq}.

To establish the clause it will be enough to show that q 
Pγ0
εq /∈ (Ṫ+)β0 .

Set ~σ := 〈σj | j ≥ j0〉, where σj := σcj ,β0(dpePβ0 ) for each j ≥ j0.
We claim that:

εq =

{
max(Im(~σ)), if q = dpePβ0 & ~σ is eventually constant;

εω, otherwise.

Case 1: By the definition of ~S, for each j ≥ j0,

max(Sαj (dpe
Pβ0 )) = max(Rjαj (dpe

Pβ0 )) = σj .

Also, since ~σ is eventually constant there is j? ≥ j0 such that

max(Rjαj (dpe
Pβ0 )) = σj? for all j ≥ j?.

So, for each j ≥ j?, Clause (3) of Definition 4.7 for ~Rj+1 yields

Sαj (dpe
Pβ0 ) = Sαj+1(dpePβ0 ).

Thus, Sα(dpePβ0 ) = Sαj? (dpePβ0 ). Therefore, εq = σj? = max(~σ).

Case 2: Here we need to discuss two cases:

I Suppose that q ∈ W≥1(dpePβ0 ). Using Fact 4.2, let q̃ ∈ W1(dpePβ0 ) be
such that q ≤β0 q̃. Combining (?) with Clause (I) we have

max(Rjαj (q)) ≤ σ
aj ≤ εj+1 for all j ≥ j0.

On the other hand, by Clause (I) and Lemma 4.23(1)

εj ≤ σaj+1,β0(w(aj+1 � β0, q̃)) ≤ σaj+1,β0(w(aj+1 � β0, q)).

Also, recalling how cj+1 was defined, Lemma 4.23(2) yields

σaj+1,β0(w(aj+1 � β0, q)) = σcj+1,β0(q) = max(Rj+1
αj+1

(q)).

Thus, εj ≤ max(Rj+1
αj+1(q)). Combining the above we get εq = εω, as wanted.

I Suppose that ~σ is not eventually constant and that q = dpePβ0 .
Let j ≥ j0 non-zero such that σj < σj+1. Our first task is to prove that

(??) σaj ,β0(w(aj � β0, r)) < σj+1, for all r ∈W1(aj+1 � β0).

Note that by equation (?) above we have

max(Rjαj (r)) = max(S
aj ,β0
αj (w(aj � β0, r))) = σaj ,β0(w(aj � β0, r)),

hence all we need to prove is σj+1 > max(Rjαj (r)). Once we establish (??)
we will be able to show that εq = εω.

So, fix r ∈W1(aj+1 � β0) and let us look at the sequence

〈max(Rj+1
i (q)) | αj ≤ i ≤ αj+1〉.

By Definition 4.7(3) for ~Rj+1 the above sequence is weakly increasing. Also,
note that the the first value of this sequence is σj and the last one is σj+1.
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Let i? ≤ αj+1 be the first index such that max(Rj+1
i (q)) = σj+1 for all

i ∈ [i?, αaj+1,β0 ]. Since by assumption σj < σj+1 note that αj < i?.

II If i? takes the form k + 1 then Definition 4.7(4) for ~Rj+1 yields

Rj+1
i? (q) \Rj+1

k (q) v Rj+1
i? (r) \Rj+1

k (r).

By minimality of i?, σj+1 = max(Rj+1
i? (q)) > max(Rj+1

k (q)). In particular,
σj+1 is a member of the left-hand-side of the above expression and thus

σj+1 > max(Rj+1
k (r)). Since αj < i?, then αj ≤ k and so

σj+1 > max(Rj+1
k (r)) ≥ max(Rj+1

αj (r)) = max(Rjαj (r)).

II If i? is limit then Clause (5) of Definition 4.7 yields

Rj+1
i? (q) =

⋃
k<i?

Rj+1
k (q) ∪ {σj+1}.

By minimality of i?, unboundedly many k ∈ (αj , i
?) must satisfy

max(Rj+1
k (q)) < max(Rj+1

k+1(q)) < σj+1.

Thus, again by Clauses (3) and (4) of Definition 4.7 for ~Rj+1,

max(Rjαj (r)) = max(Rj+1
αj (r)) ≤ max(Rj+1

k (r)) < max(Rj+1
k+1(q)) < σj+1.

The above discussion yields (??).
Combining (??) with Clause (I) for aj we get

εj−1 < σaj ,β0(w(aj � β0, r)) < σj+1.

On the other hand, equation (?) yields

Rj+1
αj+1

(q) = S
aj+1,β0
αj+1 (w(aj+1 � β0, q)),

hence Clause (I) implies that σj+1 ≤ σaj+1 ≤ εj+1. Altogether,

εω = sup
j≥j0

σj = εq.
29

After computing εq we are in conditions to show that q 
Pγ0
εq /∈ (Ṫ+)β0 .

The case in which q = dpeP0 and ~σ is eventually constant is trivial. Indeed,
let j ≥ j0 be such that max(~σ) = σj . By the above discussion, εq = σj .

Appealing to Clause (2) of Definition 4.5 for Rj we have σj ∈ Rjαj (dpe
Pβ0 ),

hence εq ∈ Rjαj (dpe
Pβ0 ). Finally, Clause (3) of Definition 4.5 for Rjαj yields

q 
Pγ0
Rjαj (q) ∩ (Ṫ+)β0 = ∅ and thus q 
Pγ0

εq /∈ (Ṫ+)β0 .

Otherwise, the previous discussion yields εq = εω. In this case, instead of

proving q 
Pγ0
εq /∈ (Ṫ+)β0 we will show more: namely, we will prove that

(εω, dpePβ0 ) ∈ Rβ0 . This will become handy when verifying Clause (4) for
Sα and Clauses (3) and (4) for Sα+1.

29For the latter equality recall the expression displayed right before Subclaim 4.24.4.1.
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Recalling the paragraph preceding Definition 4.5, (εω, dpePβ0 ) ∈ Rβ0 amounts

to say that r 
(Pβ0
)
`β0

(r)
εω ∈ Ċβ0

`β0
(r) for all r ≤β0 dpe

Pβ0 .30 Fix r ≤β0 dpe
Pβ0 .

I If r ∈ (Pβ0)
dpePβ0

≥1 then, for each j ≥ j0, tδ,β0(aj+1)(r) ∈ (Pδ)
aj+1

≥1 and

so there is some cj+1 ∈ W≥1(aj+1) such that tδ,β0(aj+1)(r) ≤0
δ cj+1. By

Lemma 3.5(3), r ≤0
β0
cj+1 �β0. Observe that γ0 ∈ Baj , hence Clause (II) for

aj+1 yields

cj+1 � β0 
(Pβ0
)`β0

(r)
Ċβ0

`β0
(r) ∩ (ε̌j , ε̌j+1) 6= ∅.

Consequently, for each j ≥ j0, r 
(Pβ0
)`β0

(r)
Ċβ0

`β0
(r) ∩ (ε̌j , ε̌j+1) 6= ∅.

Finally, since r 
(Pβ0
)`β0

(r)
“Ċβ0

`β0
(r) is a club” one concludes that

(R) r 
(Pβ0
)`β0

(r)
ε̌ω ∈ Ċβ0

`β0
(r).

I Otherwise, r ∈ (Pβ0)
dpePβ0

0 . Then, we first claim that

dpePβ0 
Pβ0
ε̌ω /∈ (Ṫ+)

β0
.

Let s ∈ (Pβ0)
dpePβ0

≥1 such that s 
Pβ0
ε̌ω ∈ (Ṫ+)

β0
. Clearly, this yields

s 
(Pβ0
)`β0

(s)
ε̌ω ∈ (Ṫ+)

β0

`β0
(s), and so s 
(Pβ0

)`β0
(s)

ε̌ω /∈ Ċβ0

`β0
(s). Note that

this produces a contradiction with equation (R) above.

So, dpePβ0 
Pβ0
ε̌ω /∈ (Ṫ+)

β0
. In particular, dpePβ0 
(Pβ0

)n ε̌ω /∈ (Ṫ+)
β0

n ,

hence dpePβ0 
(Pβ0
)n ε̌ω ∈ Ċ

β0
n .

31 In effect, the same is (Pβ0)n-forced by r.

Therefore, we have proved that (εq, dpePβ0 ) ∈ Rβ0 for all q ∈W (dpePβ0 ).

Note that at this point we have managed to argue that q 
P εq /∈ (Ṫ+)β0

for all q ∈W (dpePβ0 ). This completes the proof of Clause (3) for Sα.

Clause (4) for Sα: Let q′ ≤Pγ0
q be a pair of members in W (dpePβ0 ) with

`(q) ≥ `(dpePβ0 ) + 1. Then q′ 6= dpePβ0 and so the previous discussion yields

εq = εω and (εω, dpePβ0 ) ∈ Rβ0 , hence (εω, q) ∈ Rβ0 , as well.

Clauses (3) & (4) of Sα+1: By the preceding discussion it is clear that

max(Sα+1(q)) = εω.Also, we have proved that (εω, dpePβ0 ) ∈ Rβ0 . Arguing
very similar as above one can use this to prove Clauses (3) and (4) for Sα+1.

Moreover, regarding Clause (4), (εω, dpePβ0 ) ∈ Rβ0 yields m(Sα+1) = 0.

To complete the proof of Clause (a) we still need to argue that b0 ∈ P̊γ0 .
By the above proof, b0 ∈ Pγ0 and mtpγ0

(b0) = m(Sα+1) = 0. Also, since

30Here note that we are (crucially) using that in Building Block II we appeal to Corol-
lary 4.18 with respect to the condition 1lPβ0

.
31Recall Remark 4.21.
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p ∈ P̊1 and dpePβ0 = p ∗ ∅β0 , we may appeal to Lemma 3.9 and infer that

b0 � β0 = dpePβ0 ∈ P̊β0 . So, recalling Definition 3.8, we have b0 ∈ P̊γ0 . �

This completes the construction when τ = 0.

Case τ > 0: Suppose that 〈bη | η < τ〉 has been already defined. Put,
b∗τ := (

⋃
η<τ bη) ∗ ∅βτ and for each j < ω, set cτj := tγτ ,βτ (aj � γτ )(b∗τ ).

Subclaim 4.24.4.2. b∗τ ∈ P̊βτ and b∗τ ≤0
βτ
aj � βτ for all j < ω.

Proof. Note that once we establish the former assertion the latter will follow
automatically from Clauses (c) and (d) of our induction hypothesis.
I If τ takes the form η̄ + 1 then Clauses (a) and (d) of the induction

hypothesis yield
⋃
η<τ bη = bη̄ ∈ P̊γη̄ . Thus, Lemma 3.9 yields b∗τ ∈ P̊βτ .

I Otherwise, set γ̄ = supη<τ γη and note that γ̄ ≤ βτ . By Clause (d) of

the induction hypothesis, b̄ :=
⋃
η<τ bη is a condition in Pγ̄ . If we show that

b̄ ∈ Pγ̄ then Lemma 3.9 will imply that b∗τ ∈ P̊βτ and we will be done.
Let β ∈ Bb̄ ∪ {1} and η < τ be such that β ∈ Bbη . By Clause (d) of the

induction hypothesis, b̄ � β = bτ � β, hence combining Clause (a) for bτ with

Lemma 3.9 we get b̄ � β ∈ P̊β. Since γ̄ is limit then b̄ ∈ P̊γ̄ . �

By the above result, cτj ∈ Pγτ and cτj ≤0
γτ aj �γτ for each j < ω. Actually,

〈cτj | j < ω〉 is a ≤πγτ ,βτγτ -decreasing sequence so, as before, it is order-

isomorphic to (ω,3). As in the preceding argument, denote by jτ the least

index such that γτ ∈ Baj for all j ≥ jτ . For each j ≥ jτ , put ~Rj,τ := ~Scj ,βτ

so that cτj = b∗τ
a〈~Rj,τ 〉. Set α := supjτ≤j<ω αj , where αj := αaj ,βτ for each

j ≥ jτ . We define bτ := b∗τ
a〈~S〉, where ~S is the sequence 〈Si | i ≤ α + 1〉

defined exactly as in the case τ = 0 above replacing ~Rj by ~Rj,τ .

We claim that bτ witnesses Clauses (a)–(d): Arguing as in the case where
τ = 0 we get bτ ∈ Pγτ and mtpγτ (bτ ) = m(Sα+1) = 0. Additionally, by

Subclaim 4.24.4.2, bτ � βτ = b∗τ ∈ P̊βτ , hence bτ ∈ P̊γτ . Finally,

Bbτ \ 2 = (Bb∗τ \ 2) ∪ {γτ} = {γη | η ≤ τ},
where the second equality comes from Clause (a) of the induction hypothesis.

For the verification of Clause (b), let us fix η ≤ τ . If η = τ then one
argues as in the case where τ = 0 that σbτ ,βτ (bτ � βτ ) = σbτ ,βτ (b∗τ ) = εω.
Otherwise, if η < τ , Clauses (b) and (d) of the induction hypothesis yield

σbτ ,βη(bτ � βη) = σbη ,βη(bη � βη) = εω.

Clause (c) follows noting that bτ ≤0
γτ cj ≤

0
γτ aj � γτ for all j < ω. Finally,

Clause (d) for bτ is a consequence of bτ � βτ = b∗τ and Clause (d) of the
induction hypothesis.

The above discussion completes the construction of a sequence 〈bτ | τ < θ〉
witnessing Clauses (a)–(d) above. Finally, set b := (

⋃
τ<θ bτ ) ∗ ∅δ.

Subclaim 4.24.4.3. b ∈ Dε
n,δ and b ≤0

δ aj for all j < ω.
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Proof. By Clause (d) we have that b ∈ Pδ, hence the latter assertion of the
claim is an outright consequence of Clauses (a) and (c).

So, we are left with checking that b ∈ Dε
n,δ. Let β ∈ Bb \2 and τ < θ such

that β = γτ . Appealing to Clause (d) for bτ+1, b � β = bτ+1 � β = bτ , hence

σb,β(b � β) = σbτ ,βτ (bτ � βτ ) = εω > ε.

Also, by Clause (a) for bτ , b � β ∈ P̊β. Likewise, by Lemma 3.9, b � 1 ∈ P̊1.
Altogether, we have proved that b ∈ Dε

n,δ as desired. �

The above completes the proof of Claim 4.24.4. �

This finishes the proof of Lemma 4.24. �

Thanks to Lemma 4.24 we can now appeal to the iteration scheme of
Section 3 with respect to the building blocks of this section and obtain, in
return, a Σ-Prikry triple (Pµ+ , `µ+ , cµ+).

Theorem 4.25. In V Pµ+ all of the following hold true:

(1) Any cardinal in V remains a cardinal and retains its cofinality;
(2) κ is a singular strong limit of countable cofinality;
(3) 2κ = κ++;
(4) Refl(<ω, κ+).

Proof. (1) By Fact 2.7(1), no cardinal≤ κ changes its cofinality; by Fact 2.7(3),
κ+ is not collapsed, and by Definition 2.3(3), no cardinal > κ+ changes its
cofinality.

(2) In V , κ is a singular strong limit of countable cofinality, and so by

Fact 2.7(1), this remains valid in V Pµ+ .
(3) In V , we have that 2κ = κ+. In addition, by Remark 3.3(1), Pµ+ is

isomorphic to a subset of Hµ+ , so that, from |Hµ+ | = κ++, we infer that

V Pµ+ |= 2κ ≤ κ++. Finally, as Pµ+ projects to P1 which is isomorphic to Q,

we get that V Pµ+ |= 2κ ≥ κ++. Altogether, V Pµ+ |= 2κ = κ++.
(4) As κ+ = µ and κ is singular, Refl(<ω, κ+) is equivalent to Refl(<ω,Eµ<κ).

By Fact 4.19, we already know that V Pµ+ |= Refl(<ω,Γ). So, by Proposi-

tion 4.3, it suffices to verify that Refl(<2, (Eµω)V ,Γ) holds in V Pµ+ .
Let G be Pµ+-generic over V and hereafter work within V [G]. Towards a

contradiction, suppose that there exists a subset T of (Eµω)V that does not
reflect in Γ. Fix r∗ ∈ G and a Pµ+-name τ such that τG is equal to such a

T and such that r∗ forces τ to be a stationary subset of (Eµω)V that does
not reflect in Γ. Furthermore, we may require that τ be a nice name, i.e.,
each element of τ is a pair (ξ̌, p) where (ξ, p) ∈ (Eµω)V × Pµ+ , and, for all

ξ ∈ (Eµω)V , the set {p | (ξ̌, p) ∈ τ} is an antichain.
As Pµ+ satisfies Clause (3) of Definition 2.3, Pµ+ has the µ+-cc. Conse-

quently, there exists a large enough β < µ+ such that

Br∗ ∪
⋃
{Bp | (ξ, p) ∈ τ} ⊆ β.
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Let r := r∗ � β and set

σ := {(ξ, p � β) | (ξ, p) ∈ τ}.
From the choice of Building Block III, we may find a large enough δ < µ+

with δ > β such that ψ(δ) = (β, r, σ). As β < δ, r ∈ Pβ and σ is a Pβ-name,
the definition of our iteration at step δ + 1 involves appealing to Building
Block II with (Pδ, `δ, cδ), r? := r∗∅δ and z := iδβ(σ). For any ordinal η < µ+,

denote Gη := πµ+,η[G]. By the choice of β, and as δ > β, we have

τ = {(ξ, p ∗ ∅µ+) | (ξ, p) ∈ σ} = {(ξ, p ∗ ∅µ+) | (ξ, p) ∈ z},
so that, in V [G],

T = τG = σGβ = zGδ .

In addition, r∗ = r? ∗ ∅µ+ .

Finally, as r∗ forces τ is a stationary subset of (Eµω)V that does not reflect
in Γ, r? forces that z is a stationary subset of (Eµω)V that does not reflect

in Γ. So, since πµ+,δ+1(r∗) = r? ∗ ∅δ+1 = dr?ePδ+1 is in Gδ+1, Clause (e) of
Building Block II entails that, in V [Gδ+1], there exists a club in µ which is
disjoint from T . In particular, T is nonstationary in V [G], contradicting its
very choice. �

Thus, we arrive at the following strengthening of the theorem announced
by Sharon in [Sha05].32

Corollary 4.26. Suppose that 〈κn | n < ω〉 is an increasing sequence of
supercompact cardinals, converging to a cardinal κ. Then there exists a
forcing extension where the following properties hold:

(1) κ is a singular strong limit cardinal of countable cofinality;
(2) 2κ = κ++, hence SCHκ fails;
(3) Refl(<ω, κ+) holds.

Proof. Let L be the inverse limit of the iteration 〈Ln; Q̇n | n < ω〉, where L0

is the trivial forcing and for positive integer n, if 1lLn 
Ln “κn−1 is supercompact”,

then 1lLn 
Ln “Q̇n is a Laver preparation for κn above κn−1”. After forcing
with L, each κn remains supercompact and, moreover, becomes indestruc-
tible under κn-directed-closed forcing. Also, the cardinals and cofinalities of
interest are preserved.

Working in V L, set µ := κ+, λ := κ++ and C := Add(λ, 1). Finally,

work in W := V L∗Ċ. Since κ is singular strong limit of cofinality ω < κ0

and κ0 is supercompact, 2κ = κ+. Also, thanks to the forcing C, 2µ = µ+.
Altogether, in W , all the following hold:

• 〈κn | n < ω〉 is an increasing sequence of Laver-Indestructible super-
compact cardinals;
• κ := supn<ω κn, µ := κ+ and λ := κ++;
• 2κ = κ+ and 2µ = µ+;

32Recall that by Fact 4.2, the extent of reflection obtained is optimal.
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Now, appeal to Theorem 4.25. �
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